迪傑斯特拉(Dijkstra)算法是典型最短路徑算法,用於計算一個節點到其他節點的最短路徑。
它的主要特點是以起始點為中心向外層層擴展(廣度優先搜索思想),直到擴展到終點為止。
基本思想
通過Dijkstra計算圖G中的最短路徑時,需要指定起點s(即從頂點s開始計算)。
此外,引進兩個集合S和U。S的作用是記錄已求出最短路徑的頂點(以及相應的最短路徑長度),而U則是記錄還未求出最短路徑的頂點(以及該頂點到起點s的距離)。
初始時,S中只有起點s;U中是除s之外的頂點,並且U中頂點的路徑是"起點s到該頂點的路徑"。然后,從U中找出路徑最短的頂點,並將其加入到S中;接着,更新U中的頂點和頂點對應的路徑。 然后,再從U中找出路徑最短的頂點,並將其加入到S中;接着,更新U中的頂點和頂點對應的路徑。 ... 重復該操作,直到遍歷完所有頂點。
操作步驟
(1) 初始時,S只包含起點s;U包含除s外的其他頂點,且U中頂點的距離為"起點s到該頂點的距離"[例如,U中頂點v的距離為(s,v)的長度,然后s和v不相鄰,則v的距離為∞]。
(2) 從U中選出"距離最短的頂點k",並將頂點k加入到S中;同時,從U中移除頂點k。
(3) 更新U中各個頂點到起點s的距離。之所以更新U中頂點的距離,是由於上一步中確定了k是求出最短路徑的頂點,從而可以利用k來更新其它頂點的距離;例如,(s,v)的距離可能大於(s,k)+(k,v)的距離。
(4) 重復步驟(2)和(3),直到遍歷完所有頂點。
單純的看上面的理論可能比較難以理解,下面通過實例來對該算法進行說明。
迪傑斯特拉算法圖解
以上圖G4為例,來對迪傑斯特拉進行算法演示(以第4個頂點D為起點)。
初始狀態:S是已計算出最短路徑的頂點集合,U是未計算除最短路徑的頂點的集合!
第1步:將頂點D加入到S中。
此時,S={D(0)}, U={A(∞),B(∞),C(3),E(4),F(∞),G(∞)}。 注:C(3)表示C到起點D的距離是3。
第2步:將頂點C加入到S中。
上一步操作之后,U中頂點C到起點D的距離最短;因此,將C加入到S中,同時更新U中頂點的距離。以頂點F為例,之前F到D的距離為∞;但是將C加入到S之后,F到D的距離為9=(F,C)+(C,D)。
此時,S={D(0),C(3)}, U={A(∞),B(23),E(4),F(9),G(∞)}。
第3步:將頂點E加入到S中。
上一步操作之后,U中頂點E到起點D的距離最短;因此,將E加入到S中,同時更新U中頂點的距離。還是以頂點F為例,之前F到D的距離為9;但是將E加入到S之后,F到D的距離為6=(F,E)+(E,D)。
此時,S={D(0),C(3),E(4)}, U={A(∞),B(23),F(6),G(12)}。
第4步:將頂點F加入到S中。
此時,S={D(0),C(3),E(4),F(6)}, U={A(22),B(13),G(12)}。
第5步:將頂點G加入到S中。
此時,S={D(0),C(3),E(4),F(6),G(12)}, U={A(22),B(13)}。
第6步:將頂點B加入到S中。
此時,S={D(0),C(3),E(4),F(6),G(12),B(13)}, U={A(22)}。
第7步:將頂點A加入到S中。
此時,S={D(0),C(3),E(4),F(6),G(12),B(13),A(22)}。
此時,起點D到各個頂點的最短距離就計算出來了:A(22) B(13) C(3) D(0) E(4) F(6) G(12)。
迪傑斯特拉算法的代碼說明
以"鄰接矩陣"為例對迪傑斯特拉算法進行說明,對於"鄰接表"實現的圖在后面會給出相應的源碼。
1. 基本定義
// 鄰接矩陣 typedef struct _graph { char vexs[MAX]; // 頂點集合 int vexnum; // 頂點數 int edgnum; // 邊數 int matrix[MAX][MAX]; // 鄰接矩陣 }Graph, *PGraph; // 邊的結構體 typedef struct _EdgeData { char start; // 邊的起點 char end; // 邊的終點 int weight; // 邊的權重 }EData;
Graph是鄰接矩陣對應的結構體。
vexs用於保存頂點,vexnum是頂點數,edgnum是邊數;matrix則是用於保存矩陣信息的二維數組。例如,matrix[i][j]=1,則表示"頂點i(即vexs[i])"和"頂點j(即vexs[j])"是鄰接點;matrix[i][j]=0,則表示它們不是鄰接點。
EData是鄰接矩陣邊對應的結構體。
2. 迪傑斯特拉算法
#include<stdio.h> #include<stdlib.h> #include<malloc.h> #include<string.h> #define MAX 100 #define INF (~(0x1<<31)) typedef struct Graph { char vexs[MAX]; int vexnum; int edgnum; int matrix[MAX][MAX]; } Graph,*PGraph; typedef struct EdgeData { char start; char end; int weight; } EData; static int get_position(Graph g,char ch) { int i; for(i=0; i<g.vexnum; i++) if(g.vexs[i]==ch) return i; return -1; } Graph* create_graph() { char vexs[]= {'A','B','C','D','E','F','G'}; int matrix[][7]= { {0,12,INF,INF,INF,16,14}, {12,0,10,INF,INF,7,INF}, {INF,10,0,3,5,6,INF}, {INF,INF,3,0,4,INF,INF}, {INF,INF,5,4,0,INF,8}, {16,7,6,INF,2,0,9}, {14,INF,INF,INF,8,9,0} }; int vlen=sizeof(vexs)/sizeof(vexs[0]); int i,j; Graph *pG; if((pG=(Graph*)malloc(sizeof(Graph)))==NULL) return NULL; memset(pG,0,sizeof(pG)); pG->vexnum=vlen; for(i=0; i<pG->vexnum; i++) pG->vexs[i]=vexs[i]; for(i=0; i<pG->vexnum; i++) for(j=0; j<pG->vexnum; j++) pG->matrix[i][j]=matrix[i][j]; for(i=0; i<pG->vexnum; i++) { for(j=0; j<pG->vexnum; j++) { if(i!=j&&pG->matrix[i][j]!=INF) pG->edgnum++; } } pG->edgnum/=2; return pG; } void print_graph(Graph G) { int i,j; printf("Matrix Graph: \n"); for(i=0; i<G.vexnum; i++) { for(j=0; j<G.vexnum; j++) printf("%10d ",G.matrix[i][j]); printf("\n"); } } EData* get_edges(Graph G) { EData *edges; edges=(EData*)malloc(G.edgnum*sizeof(EData)); int i,j; int index=0; for(i=0; i<G.vexnum; i++) { for(j=i+1; j<G.vexnum; j++) { if(G.matrix[i][j]!=INF) { edges[index].start=G.vexs[i]; edges[index].end=G.vexs[j]; edges[index].weight=G.matrix[i][j]; index++; } } } return edges; } void dijkstra(Graph G,int vs,int prev[],int dist[]) { int i,j,k; int min; int tmp; int flag[MAX]; for(i=0;i<G.vexnum;i++) { flag[i]=0; prev[i]=vs; dist[i]=G.matrix[vs][i]; } flag[vs]=1; dist[vs]=0; for(i=1;i<G.vexnum;i++) { min=INF; for(j=0;j<G.vexnum;j++) { if(flag[j]==0&&dist[j]<min) { min=dist[j]; k=j; } } flag[k]=1; for(j=0;j<G.vexnum;j++) { tmp=((G.matrix[k][j]==INF)?INF:(min+G.matrix[k][j])); if(flag[j]==0&&tmp<dist[j]) { dist[j]=tmp; prev[j]=k; } } } printf("dijktra(%c):\n",G.vexs[vs]); for(i=0;i<G.vexnum;i++) printf(" shortest (%c,%c)=%d\n",G.vexs[vs],G.vexs[i],dist[i]); } int main() { Graph *pG; pG=create_graph(); print_graph(*pG); int prev[MAX]; int dist[MAX]; dijkstra(*pG,3,prev,dist); int i; for(i=0;i<pG->vexnum;i++) printf("%c %c \n",pG->vexs[prev[i]],pG->vexs[i]); }
運行結果: