根據前篇博文《神經網絡之后向傳播算法》,現在用java實現一個bp神經網絡。矩陣運算采用jblas庫,然后逐漸增加功能,支持並行計算,然后支持輸入向量調整,最后支持L-BFGS學習算法。
上帝說,要有神經網絡,於是,便有了一個神經網絡。上帝還說,神經網絡要有節點,權重,激活函數,輸出函數,目標函數,然后也許還要有一個准確率函數,於是,神經網絡完成了:
public class Net {
List<DoubleMatrix> weights = new ArrayList<DoubleMatrix>();
List<DoubleMatrix> bs = new ArrayList<>();
List<ScalarDifferentiableFunction> activations = new ArrayList<>();
CostFunctionFactory costFunc;
CostFunctionFactory accuracyFunc;
int[] nodesNum;
int layersNum;
public Net(int[] nodesNum, ScalarDifferentiableFunction[] activations,CostFunctionFactory costFunc) {
super();
this.initNet(nodesNum, activations);
this.costFunc=costFunc;
this.layersNum=nodesNum.length-1;
}
public Net(int[] nodesNum, ScalarDifferentiableFunction[] activations,CostFunctionFactory costFunc,CostFunctionFactory accuracyFunc) {
this(nodesNum,activations,costFunc);
this.accuracyFunc=accuracyFunc;
}
public void resetNet() {
this.initNet(nodesNum, (ScalarDifferentiableFunction[]) activations.toArray());
}
private void initNet(int[] nodesNum, ScalarDifferentiableFunction[] activations) {
assert (nodesNum != null && activations != null
&& nodesNum.length == activations.length + 1 && nodesNum.length > 1);
this.nodesNum = nodesNum;
this.weights.clear();
this.bs.clear();
this.activations.clear();
for (int i = 0; i < nodesNum.length - 1; i++) {
// 列數==輸入;行數==輸出。
int columns = nodesNum[i];
int rows = nodesNum[i + 1];
double r1 = Math.sqrt(6) / Math.sqrt(rows + columns + 1);
//r1=0.001;
// W
DoubleMatrix weight = DoubleMatrix.rand(rows, columns).muli(2*r1).subi(r1);
//weight=DoubleMatrix.ones(rows, columns);
weights.add(weight);
// b
DoubleMatrix b = DoubleMatrix.zeros(rows, 1);
bs.add(b);
// activations
this.activations.add(activations[i]);
}
}
}
上帝造完了神經網絡,去休息了。人說,我要使用神經網絡,我要利用正向傳播計算各層的結果,然后利用反向傳播調整網絡的狀態,最后,我要讓它能告訴我獵物在什么方向,花兒為什么這樣香。
public class Propagation {
Net net;
public Propagation(Net net) {
super();
this.net = net;
}
// 多個樣本。
public ForwardResult forward(DoubleMatrix input) {
ForwardResult result = new ForwardResult();
result.input = input;
DoubleMatrix currentResult = input;
int index = -1;
for (DoubleMatrix weight : net.weights) {
index++;
DoubleMatrix b = net.bs.get(index);
final ScalarDifferentiableFunction activation = net.activations
.get(index);
currentResult = weight.mmul(currentResult).addColumnVector(b);
result.netResult.add(currentResult);
// 乘以導數
DoubleMatrix derivative = MatrixUtil.applyNewElements(
new ScalarFunction() {
@Override
public double valueAt(double x) {
return activation.derivativeAt(x);
}
}, currentResult);
currentResult = MatrixUtil.applyNewElements(activation,
currentResult);
result.finalResult.add(currentResult);
result.derivativeResult.add(derivative);
}
result.netResult=null;// 不再需要。
return result;
}
// 多個樣本梯度平均值。
public BackwardResult backward(DoubleMatrix target,
ForwardResult forwardResult) {
BackwardResult result = new BackwardResult();
DoubleMatrix cost = DoubleMatrix.zeros(1,target.columns);
DoubleMatrix output = forwardResult.finalResult
.get(forwardResult.finalResult.size() - 1);
DoubleMatrix outputDelta = DoubleMatrix.zeros(output.rows,
output.columns);
DoubleMatrix outputDerivative = forwardResult.derivativeResult
.get(forwardResult.derivativeResult.size() - 1);
DoubleMatrix accuracy = null;
if (net.accuracyFunc != null) {
accuracy = DoubleMatrix.zeros(1,target.columns);
}
for (int i = 0; i < target.columns; i++) {
CostFunction costFunc = net.costFunc.create(target.getColumn(i)
.toArray());
cost.put(i, costFunc.valueAt(output.getColumn(i).toArray()));
// System.out.println(i);
DoubleMatrix column1 = new DoubleMatrix(
costFunc.derivativeAt(output.getColumn(i).toArray()));
DoubleMatrix column2 = outputDerivative.getColumn(i);
outputDelta.putColumn(i, column1.muli(column2));
if (net.accuracyFunc != null) {
CostFunction accuracyFunc = net.accuracyFunc.create(target
.getColumn(i).toArray());
accuracy.put(i,
accuracyFunc.valueAt(output.getColumn(i).toArray()));
}
}
result.deltas.add(outputDelta);
result.cost = cost;
result.accuracy = accuracy;
for (int i = net.layersNum - 1; i >= 0; i--) {
DoubleMatrix pdelta = result.deltas.get(result.deltas.size() - 1);
// 梯度計算,取所有樣本平均
DoubleMatrix layerInput = i == 0 ? forwardResult.input
: forwardResult.finalResult.get(i - 1);
DoubleMatrix gradient = pdelta.mmul(layerInput.transpose()).div(
target.columns);
result.gradients.add(gradient);
// 偏置梯度
result.biasGradients.add(pdelta.rowMeans());
// 計算前一層delta,若i=0,delta為輸入層誤差,即input調整梯度,不作平均處理。
DoubleMatrix delta = net.weights.get(i).transpose().mmul(pdelta);
if (i > 0)
delta = delta.muli(forwardResult.derivativeResult.get(i - 1));
result.deltas.add(delta);
}
Collections.reverse(result.gradients);
Collections.reverse(result.biasGradients);
//其它的delta都不需要。
DoubleMatrix inputDeltas=result.deltas.get(result.deltas.size()-1);
result.deltas.clear();
result.deltas.add(inputDeltas);
return result;
}
public Net getNet() {
return net;
}
}
上面是一次正向/反向傳播的具體代碼。訓練方式為批量訓練,即所有樣本一起訓練。然而我們可以傳入只有一列的input/target樣本實現adapt方式的串行訓練,也可以把樣本分成很多批傳入實現mini-batch方式的訓練,這,不是Propagation要考慮的事情,它只是忠實的把傳入的數據正向過一遍,反向過一遍,然后把過后的數據原封不動的返回給你。至於傳入什么,以及結果怎么運用,是Trainer和Learner要做的事情。下回分解。
