對所有CPU寄存器的簡述(16位CPU14個,32位CPU16個)


32位CPU所含有的寄存器有:
4個數據寄存器(EAX、EBX、ECX和EDX)
2個變址和指針寄存器(ESI和EDI)
2個指針寄存器(ESP和EBP)
6個段寄存器(ES、CS、SS、DS、FS和GS)
1個指令指針寄存器(EIP)
1個標志寄存器(EFlags)

--------------------------------------------------
1、數據寄存器

寄存器AX和AL通常稱為累加器(Accumulator),用累加器進行的操作可能需要更少時間。累加器可用於乘、除、輸入/輸出等操作,它們的使用頻率很高;
寄存器BX稱為基地址寄存器(Base Register)。它可作為存儲器指針來使用;
寄存器CX稱為計數寄存器(Count Register)。在循環和字符串操作時,要用它來控制循環次數;在位操作中,當移多位時,要用CL來指明移位的位數;
寄存器DX稱為數據寄存器(Data Register)。在進行乘、除運算時,它可作為默認的操作數參與運算,也可用於存放I/O的端口地址。

在16位CPU中,AX、BX、CX和DX不能作為基址和變址寄存器來存放存儲單元的地址,但在32位CPU中,其32位寄存器EAX、EBX、ECX和EDX不僅可傳送數據、暫存數據保存算術邏輯運算結果,而且也可作為指針寄存器,所以,這些32位寄存器更具有通用性。

--------------------------------------------------
2、變址寄存器

SI 存儲器指針、串指令中的源操作數指針
DI 存儲器指針、串指令中的目的操作數指針

寄存器ESI、EDI稱為變址寄存器(Index Register),它們主要用於存放存儲單元在段內的偏移量,用它們可實現多種存儲器操作數的尋址方式,為以不同的地址形式訪問存儲單元提供方便。
變址寄存器不可分割成8位寄存器。作為通用寄存器,也可存儲算術邏輯運算的操作數和運算結果。
它們可作一般的存儲器指針使用。在字符串操作指令的執行過程中,對它們有特定的要求,而且還具有特殊的功能。

ESI/EDI分別叫做"源/目標索引寄存器"(source/destination index),因為在很多字符串操作指令中,DS:ESI指向源串,而ES:EDI指向目標串。

--------------------------------------------------
3、指針寄存器

寄存器EBP、ESP稱為指針寄存器(PointerRegister),主要用於存放堆棧內存儲單元的偏移量,用它們可實現多種存儲器操作數的尋址方式,為以不同的地址形式訪問存儲單元提供方便。
指針寄存器不可分割成8位寄存器。作為通用寄存器,也可存儲算術邏輯運算的操作數和運算結果。

它們主要用於訪問堆棧內的存儲單元,並且規定:
EBP為基指針(Base Pointer)寄存器,用它可直接存取堆棧中的數據;(另一處看到的理解:EBP保存調用者的EBP,然后EBP指向此時的棧頂)
ESP為堆棧指針(Stack Pointer)寄存器,用它只可訪問棧頂。

--------------------------------------------------
4、段寄存器

CS——代碼段寄存器(CodeSegmentRegister),其值為代碼段的段值;
DS——數據段寄存器(DataSegmentRegister),其值為數據段的段值;
SS——堆棧段寄存器(StackSegmentRegister),其值為堆棧段的段值;
ES——附加段寄存器(ExtraSegmentRegister),其值為附加數據段的段值;
FS——附加段寄存器(ExtraSegmentRegister),其值為附加數據段的段值(32位CPU新增);
GS——附加段寄存器(ExtraSegmentRegister),其值為附加數據段的段值(32位CPU新增)。

在16位CPU系統中,它只有4個段寄存器,所以,程序在任何時刻至多有4個正在使用的段可直接訪問;在32位微機系統中,它有6個段寄存器,所以,在此環境下開發的程序最多可同時訪問6個段。

32位CPU有兩個不同的工作方式:實方式和保護方式。在每種方式下,段寄存器的作用是不同的。有關規定簡單描述如下:
實方式:
前4個段寄存器CS、DS、ES和SS與先前CPU中的所對應的段寄存器的含義完全一致,內存單元的邏輯地址仍為“段值:偏移量”的形式。為訪問某內存段內的數據,必須使用該段寄存器和存儲單元的偏移量。
保護方式:
在此方式下,情況要復雜得多,裝入段寄存器的不再是段值,而是稱為“選擇子”(Selector)的某個值。
--------------------------------------------------
5、指令指針寄存器

指令指針EIP、IP(InstructionPointer)是存放下次將要執行的指令在代碼段的偏移量。在具有預取指令功能的系統中,下次要執行的指令通常已被預取到指令隊列中,除非發生轉移情況。所以,在理解它們的功能時,不考慮存在指令隊列的情況。(另一處看到的理解:EIP 返回本次調用后,下一條指令的地址。)
在實方式下,由於每個段的最大范圍為64K,所以,EIP中的高16位肯定都為0,此時,相當於只用其低16位的IP來反映程序中指令的執行次序。

--------------------------------------------------
6、標志寄存器

一、運算結果標志位
1、進位標志CF(CarryFlag)
進位標志CF主要用來反映運算是否產生進位或借位。如果運算結果的最高位產生了一個進位或借位,那么,其值為1,否則其值為0。
使用該標志位的情況有:多字(字節)數的加減運算,無符號數的大小比較運算,移位操作,字(字節)之間移位,專門改變CF值的指令等。
2、奇偶標志PF(ParityFlag)
奇偶標志PF用於反映運算結果中“1”的個數的奇偶性。如果“1”的個數為偶數,則PF的值為1,否則其值為0。
利用PF可進行奇偶校驗檢查,或產生奇偶校驗位。在數據傳送過程中,為了提供傳送的可靠性,如果采用奇偶校驗的方法,就可使用該標志位。
3、輔助進位標志AF(AuxiliaryCarryFlag)
在發生下列情況時,輔助進位標志AF的值被置為1,否則其值為0:
(1)、在字操作時,發生低字節向高字節進位或借位時;
(2)、在字節操作時,發生低4位向高4位進位或借位時。
對以上6個運算結果標志位,在一般編程情況下,標志位CF、ZF、SF和OF的使用頻率較高,而標志位PF和AF的使用頻率較低。
4、零標志ZF(ZeroFlag)
零標志ZF用來反映運算結果是否為0。如果運算結果為0,則其值為1,否則其值為0。在判斷運算結果是否為0時,可使用此標志位。
5、符號標志SF(SignFlag)
符號標志SF用來反映運算結果的符號位,它與運算結果的最高位相同。在微機系統中,有符號數采用補碼表示法,所以,SF也就反映運算結果的正負號。運算結果為正數時,SF的值為0,否則其值為1。
6、溢出標志OF(OverflowFlag)
溢出標志OF用於反映有符號數加減運算所得結果是否溢出。如果運算結果超過當前運算位數所能表示的范圍,則稱為溢出,OF的值被置為1,否則,OF的值被清為0。“溢出”和“進位”是兩個不同含義的概念,不要混淆。如果不太清楚的話,請查閱《計算機組成原理》課程中的有關章節。

 

參考:http://blog.csdn.net/trochiluses/article/details/9105353


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM