內旋輪線(hypotrochoid)是追蹤附着在圍繞半徑為 R 的固定的圓內側滾轉的半徑為 r 的圓上的一個點得到的轉跡線,這個點到內部滾動的圓的中心的距離是 d。
相關軟件參見:數學圖形可視化工具,使用自己定義語法的腳本代碼生成數學圖形.該軟件免費開源.QQ交流群: 367752815
圓內旋輪線(隨機圈)
vertices = 12000 a = rand2(1, 10) r = rand2(1, 10) d = rand2(0.5, 10) t = from 0 to (120*PI) x = (a - r)*cos(t) + d*cos((a/r - 1)*t) y = (a - r)*sin(t) - d*sin((a/r - 1)*t)
內旋輪線中不同參數設置可以生成一些固定的圖形
三尖瓣線
vertices = 1000 r = 10.0 m = 2 t = from 0 to (5*PI) x = r*[m*cos(t) + cos(m*t)] y = r*[m*sin(t) - sin(m*t)]
星形線
vertices = 1000 r = 10.0 m = 1.5 t = from 0 to (5*PI) x = r*[m*cos(t) + cos(m*t)] y = r*[m*sin(t) - sin(m*t)]
5角星形
vertices = 1000 r = 10.0 m = 4 t = from 0 to (2*PI) x = r*[m*cos(t) + cos(m*t)] y = r*[m*sin(t) - sin(m*t)]
圓內旋輪線(5圈)
vertices = 12000 a = 10 r = 8 d = rand2(0.5, 10) t = from 0 to (8*PI) x = (a - r)*cos(t) + d*cos((a/r - 1)*t) y = (a - r)*sin(t) - d*sin((a/r - 1)*t)
圓內旋輪線(橢圓)
vertices = 12000 a = 10 r = 5 d = rand2(0.5, 10) t = from 0 to (2*PI) x = (a - r)*cos(t) + d*cos((a/r - 1)*t) y = (a - r)*sin(t) - d*sin((a/r - 1)*t)
橢圓面
vertices = D1:512 D2:100 u = from 0 to (PI*5) D1 v = from 0.0 to 1.0 D2 r = 10.0 m = 1 x = r*[m*cos(u) + v*cos(m*u)] y = r*[m*sin(u) - v*sin(m*u)]
三尖瓣面
vertices = D1:512 D2:100
u = from 0 to (PI*5) D1 v = from 0.0 to 1.0 D2 r = 10.0 m = 2 x = r*[m*cos(u) + v*cos(m*u)] y = r*[m*sin(u) - v*sin(m*u)]
五星面
vertices = D1:512 D2:100 u = from 0 to (PI*5) D1 v = from 0.0 to 1.0 D2 r = 10.0 m = 1.5 x = r*[m*cos(u) + v*cos(m*u)] y = r*[m*sin(u) - v*sin(m*u)]
圓內旋輪面(5角星形)
vertices = D1:512 D2:100 u = from 0 to (PI*5) D1 v = from 0.0 to 1.0 D2 r = 10.0 m = 4 x = r*[m*cos(u) + v*cos(m*u)] y = r*[m*sin(u) - v*sin(m*u)]