原題地址:https://oj.leetcode.com/problems/palindrome-partitioning-ii/
題意:
Given a string s, partition s such that every substring of the partition is a palindrome.
Return the minimum cuts needed for a palindrome partitioning of s.
For example, given s = "aab"
,
Return 1
since the palindrome partitioning ["aa","b"]
could be produced using 1 cut.
解題思路:由於這次不需要窮舉出所有符合條件的回文分割,而是需要找到一個字符串s回文分割的最少分割次數,分割出來的字符串都是回文字符串。求次數的問題,不需要dfs,用了也會超時,之前的文章說過,求次數要考慮動態規划(dp)。對於程序的說明:p[i][j]表示從字符i到j是否為一個回文字符串。dp[i]表示從第i個字符到最后一個字符,最少的分割次數下,有多少個回文字符串,即分割次數+1。這道題動態規划的思路比較簡單,直接上代碼吧。
代碼:
class Solution: # @param s, a string # @return an integer # @dfs time out # @dp is how many palindromes in the word def minCut(self, s): dp = [0 for i in range(len(s)+1)] p = [[False for i in range(len(s))] for j in range(len(s))] for i in range(len(s)+1): dp[i] = len(s) - i for i in range(len(s)-1, -1, -1): for j in range(i, len(s)): if s[i] == s[j] and (((j - i) < 2) or p[i+1][j-1]): p[i][j] = True dp[i] = min(1+dp[j+1], dp[i]) return dp[0]-1