Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center).
For example, this binary tree is symmetric:
1 / \ 2 2 / \ / \ 3 4 4 3
But the following is not:
1 / \ 2 2 \ \ 3 3
Note:
Bonus points if you could solve it both recursively and iteratively.
二叉樹是否對稱的本質,其實是判定兩棵樹是否鏡像。
遞歸是很常見的實現方式,最簡便。
/** * Definition for binary tree * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: bool isSymmetric(TreeNode *root) { if(!root) return true; return compRoot(root -> left, root -> right); } private: bool compRoot(TreeNode* lroot, TreeNode* rroot){ if(!lroot) return (NULL == rroot); if(NULL == rroot) return false; if(lroot -> val != rroot -> val) return false; return (compRoot(lroot -> left, rroot -> right) && compRoot(lroot -> right, rroot -> left)); } };
非遞歸,我的方法其實還是很常規,用棧來代替。因為是對稱比較,所以要兩個棧。
這個思路其實可以稍微簡化一下,改用一個雙端隊列deque實現。比起用兩個棧來,顯得稍微“洋氣”一點 ==。
/** * Definition for binary tree * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: bool isSymmetric(TreeNode *root) { if(!root) return true; if(!root -> left && !root -> right) return true; if( (!root -> left && root -> right) || (root -> left && !root -> right) ) return false; deque<TreeNode*> dq; dq.push_front(root -> left); dq.push_back(root -> right); while(!dq.empty()){ TreeNode* lroot = dq.front(); TreeNode* rroot = dq.back(); dq.pop_front(); dq.pop_back(); if(lroot -> val != rroot -> val) return false; if( (!lroot -> right && rroot -> left) || (lroot -> right && !rroot -> left) ) return false; if(lroot -> right){ dq.push_front(lroot -> right); dq.push_back(rroot -> left); } if( (!lroot -> left && rroot -> right) || (lroot -> left && !rroot -> right) ) return false; if(lroot -> left){ dq.push_front(lroot -> left); dq.push_back(rroot -> right); } } return true; } };