- package com.algorithm.hash;
- public class alg1 {
- public static void main(String argv[]) {
- int[] array1 = {10,2,7,4,5,6,3,8,9,1};
- int[] array2 = {1,2,3,4,5,6,7,8,9,10};
- int[] array3 = {1,2,3,4,5,6,7,8,9,10};
- alg1.execute1(array1, 8);
- alg1.execute2(array2, 8);
- alg1.execute3(array3, 8);
- }
- //思路:使用hash表存儲數組各元素是否存在的標志,然后遍歷數組,判斷sum與當前數組元素的差值是否在hash表中,
- //若為真則打印,該算法不要求數組有序,但要求一個hash數組的額外空間,時間復雜度是O(n)
- private static void execute1(int[] array, int m) {
- int size = array.length;
- int hash[] = new int[size];
- for(int i = 0; i < size; i++) {
- hash[array[i]%size] = 1;
- }
- for(int i = 0; i < size; i++) {
- int tmp = m - array[i];
- if((tmp > array[i]) && (hash[tmp%size] == 1)){
- System.out.println(array[i] + " " + tmp);
- }
- }
- }
- //思路:該方法的前提是要求數組是有序的,然后再遍歷數組,判斷sum與數組元素的差值是否在數組中,由於數組有序所以可以采用二分查找的方法
- //二分查找的時間復雜度為O(logn),排序的時間復雜度是O(nlogn),查找n次,總的時間復雜度為O(nlogn),避免了空間的浪費
- private static void execute2(int[] array, int m) {
- for(int i = 0; i < array.length; i++) {
- int tmp = m - array[i];
- if (tmp > array[i]) {
- if (binarySearch(array, tmp) != -1) {
- System.out.println(array[i] + " " + tmp);
- }
- }
- }
- }
- private static int binarySearch(int[] array, int key) {
- if (array.length == 0) {
- return -1;
- }
- int first = 0;
- int last = array.length -1;
- int mid;
- while(first <= last) {
- mid = (first + last) / 2;
- if (array[mid] == key) {
- return mid;
- } else if (array[mid] < key) {
- first = mid + 1;
- } else {
- last = mid -1;
- }
- }
- return -1;
- }
- //思路:該方法的前提是要求數組是有序的,使用兩個指針,分別指向最后一個元素和第一個元素,判斷它們的和是否等於sum,若等於則打印,並且first向前移動,last也向前移動
- //若它們的和小於sum,則說明first太小了,需要first向前移動,若它們的和大於sum,則說明last太大了,需要last向前移動,直到last>=first
- private static void execute3(int[] array, int m) {
- int first = 0;
- int last = array.length -1;
- int sum = 0;
- while(first < last ) {
- sum = array[first] + array[last];
- if (sum == m) {
- System.out.println(array[first] + " " + array[last]);
- first++;
- last--;
- } else if (sum < m) {
- first++;
- } else {
- last--;
- }
- }
- }
-