圖像處理之霍夫變換圓檢測算法


圖像處理之霍夫變換圓檢測算法

之前寫過一篇文章講述霍夫變換原理與利用霍夫變換檢測直線, 結果發現訪問量還是蠻

多,有點超出我的意料,很多人都留言說代碼寫得不好,沒有注釋,結構也不是很清晰,所以

我萌發了再寫一篇,介紹霍夫變換圓檢測算法,同時也盡量的加上詳細的注釋,介紹代碼

結構.讓更多的人能夠讀懂與理解.

一:霍夫變換檢測圓的數學原理


 

根據極坐標,圓上任意一點的坐標可以表示為如上形式, 所以對於任意一個圓, 假設

中心像素點p(x0, y0)像素點已知, 圓半徑已知,則旋轉360由極坐標方程可以得到每

個點上得坐標同樣,如果只是知道圖像上像素點, 圓半徑,旋轉360°則中心點處的坐

標值必定最強.這正是霍夫變換檢測圓的數學原理.

 

二:算法流程

該算法大致可以分為以下幾個步驟

 

 

三:運行效果

圖像從空間坐標變換到極坐標效果, 最亮一點為圓心.

 

圖像從極坐標變換回到空間坐標,檢測結果顯示:


四:關鍵代碼解析

個人覺得這次注釋已經是非常的詳細啦,而且我寫的還是中文注釋

 

	/**
	 * 霍夫變換處理 - 檢測半徑大小符合的圓的個數
	 * 1. 將圖像像素從2D空間坐標轉換到極坐標空間
	 * 2. 在極坐標空間中歸一化各個點強度,使之在0〜255之間
	 * 3. 根據極坐標的R值與輸入參數(圓的半徑)相等,尋找2D空間的像素點
	 * 4. 對找出的空間像素點賦予結果顏色(紅色)
	 * 5. 返回結果2D空間像素集合
	 * @return int []
	 */
	public int[] process() {

		// 對於圓的極坐標變換來說,我們需要360度的空間梯度疊加值
		acc = new int[width * height];
		for (int y = 0; y < height; y++) {
			for (int x = 0; x < width; x++) {
				acc[y * width + x] = 0;
			}
		}
		int x0, y0;
		double t;
		for (int x = 0; x < width; x++) {
			for (int y = 0; y < height; y++) {

				if ((input[y * width + x] & 0xff) == 255) {

					for (int theta = 0; theta < 360; theta++) {
						t = (theta * 3.14159265) / 180; // 角度值0 ~ 2*PI
						x0 = (int) Math.round(x - r * Math.cos(t));
						y0 = (int) Math.round(y - r * Math.sin(t));
						if (x0 < width && x0 > 0 && y0 < height && y0 > 0) {
							acc[x0 + (y0 * width)] += 1;
						}
					}
				}
			}
		}

		// now normalise to 255 and put in format for a pixel array
		int max = 0;

		// Find max acc value
		for (int x = 0; x < width; x++) {
			for (int y = 0; y < height; y++) {

				if (acc[x + (y * width)] > max) {
					max = acc[x + (y * width)];
				}
			}
		}

		// 根據最大值,實現極坐標空間的灰度值歸一化處理
		int value;
		for (int x = 0; x < width; x++) {
			for (int y = 0; y < height; y++) {
				value = (int) (((double) acc[x + (y * width)] / (double) max) * 255.0);
				acc[x + (y * width)] = 0xff000000 | (value << 16 | value << 8 | value);
			}
		}
		
		// 繪制發現的圓
		findMaxima();
		System.out.println("done");
		return output;
	}

完整的算法源代碼, 已經全部的加上注釋

 

 

package com.gloomyfish.image.transform.hough;
/***
 * 
 * 傳入的圖像為二值圖像,背景為黑色,目標前景顏色為為白色
 * @author gloomyfish
 * 
 */
public class CircleHough {

	private int[] input;
	private int[] output;
	private int width;
	private int height;
	private int[] acc;
	private int accSize = 1;
	private int[] results;
	private int r; // 圓周的半徑大小

	public CircleHough() {
		System.out.println("Hough Circle Detection...");
	}

	public void init(int[] inputIn, int widthIn, int heightIn, int radius) {
		r = radius;
		width = widthIn;
		height = heightIn;
		input = new int[width * height];
		output = new int[width * height];
		input = inputIn;
		for (int y = 0; y < height; y++) {
			for (int x = 0; x < width; x++) {
				output[x + (width * y)] = 0xff000000; //默認圖像背景顏色為黑色
			}
		}
	}

	public void setCircles(int circles) {
		accSize = circles; // 檢測的個數
	}
	
	/**
	 * 霍夫變換處理 - 檢測半徑大小符合的圓的個數
	 * 1. 將圖像像素從2D空間坐標轉換到極坐標空間
	 * 2. 在極坐標空間中歸一化各個點強度,使之在0〜255之間
	 * 3. 根據極坐標的R值與輸入參數(圓的半徑)相等,尋找2D空間的像素點
	 * 4. 對找出的空間像素點賦予結果顏色(紅色)
	 * 5. 返回結果2D空間像素集合
	 * @return int []
	 */
	public int[] process() {

		// 對於圓的極坐標變換來說,我們需要360度的空間梯度疊加值
		acc = new int[width * height];
		for (int y = 0; y < height; y++) {
			for (int x = 0; x < width; x++) {
				acc[y * width + x] = 0;
			}
		}
		int x0, y0;
		double t;
		for (int x = 0; x < width; x++) {
			for (int y = 0; y < height; y++) {

				if ((input[y * width + x] & 0xff) == 255) {

					for (int theta = 0; theta < 360; theta++) {
						t = (theta * 3.14159265) / 180; // 角度值0 ~ 2*PI
						x0 = (int) Math.round(x - r * Math.cos(t));
						y0 = (int) Math.round(y - r * Math.sin(t));
						if (x0 < width && x0 > 0 && y0 < height && y0 > 0) {
							acc[x0 + (y0 * width)] += 1;
						}
					}
				}
			}
		}

		// now normalise to 255 and put in format for a pixel array
		int max = 0;

		// Find max acc value
		for (int x = 0; x < width; x++) {
			for (int y = 0; y < height; y++) {

				if (acc[x + (y * width)] > max) {
					max = acc[x + (y * width)];
				}
			}
		}

		// 根據最大值,實現極坐標空間的灰度值歸一化處理
		int value;
		for (int x = 0; x < width; x++) {
			for (int y = 0; y < height; y++) {
				value = (int) (((double) acc[x + (y * width)] / (double) max) * 255.0);
				acc[x + (y * width)] = 0xff000000 | (value << 16 | value << 8 | value);
			}
		}
		
		// 繪制發現的圓
		findMaxima();
		System.out.println("done");
		return output;
	}

	private int[] findMaxima() {
		results = new int[accSize * 3];
		int[] output = new int[width * height];
		
		// 獲取最大的前accSize個值
		for (int x = 0; x < width; x++) {
			for (int y = 0; y < height; y++) {
				int value = (acc[x + (y * width)] & 0xff);

				// if its higher than lowest value add it and then sort
				if (value > results[(accSize - 1) * 3]) {

					// add to bottom of array
					results[(accSize - 1) * 3] = value; //像素值
					results[(accSize - 1) * 3 + 1] = x; // 坐標X
					results[(accSize - 1) * 3 + 2] = y; // 坐標Y

					// shift up until its in right place
					int i = (accSize - 2) * 3;
					while ((i >= 0) && (results[i + 3] > results[i])) {
						for (int j = 0; j < 3; j++) {
							int temp = results[i + j];
							results[i + j] = results[i + 3 + j];
							results[i + 3 + j] = temp;
						}
						i = i - 3;
						if (i < 0)
							break;
					}
				}
			}
		}

		// 根據找到的半徑R,中心點像素坐標p(x, y),繪制圓在原圖像上
		System.out.println("top " + accSize + " matches:");
		for (int i = accSize - 1; i >= 0; i--) {
			drawCircle(results[i * 3], results[i * 3 + 1], results[i * 3 + 2]);
		}
		return output;
	}

	private void setPixel(int value, int xPos, int yPos) {
		/// output[(yPos * width) + xPos] = 0xff000000 | (value << 16 | value << 8 | value);
		output[(yPos * width) + xPos] = 0xffff0000;
	}

	// draw circle at x y
	private void drawCircle(int pix, int xCenter, int yCenter) {
		pix = 250; // 顏色值,默認為白色

		int x, y, r2;
		int radius = r;
		r2 = r * r;
		
		// 繪制圓的上下左右四個點
		setPixel(pix, xCenter, yCenter + radius);
		setPixel(pix, xCenter, yCenter - radius);
		setPixel(pix, xCenter + radius, yCenter);
		setPixel(pix, xCenter - radius, yCenter);

		y = radius;
		x = 1;
		y = (int) (Math.sqrt(r2 - 1) + 0.5);
		
		// 邊緣填充算法, 其實可以直接對循環所有像素,計算到做中心點距離來做
		// 這個方法是別人寫的,發現超贊,超好!
		while (x < y) {
			setPixel(pix, xCenter + x, yCenter + y);
			setPixel(pix, xCenter + x, yCenter - y);
			setPixel(pix, xCenter - x, yCenter + y);
			setPixel(pix, xCenter - x, yCenter - y);
			setPixel(pix, xCenter + y, yCenter + x);
			setPixel(pix, xCenter + y, yCenter - x);
			setPixel(pix, xCenter - y, yCenter + x);
			setPixel(pix, xCenter - y, yCenter - x);
			x += 1;
			y = (int) (Math.sqrt(r2 - x * x) + 0.5);
		}
		if (x == y) {
			setPixel(pix, xCenter + x, yCenter + y);
			setPixel(pix, xCenter + x, yCenter - y);
			setPixel(pix, xCenter - x, yCenter + y);
			setPixel(pix, xCenter - x, yCenter - y);
		}
	}

	public int[] getAcc() {
		return acc;
	}

}

測試的UI類:

 

 

package com.gloomyfish.image.transform.hough;

import java.awt.BorderLayout;
import java.awt.Color;
import java.awt.Dimension;
import java.awt.FlowLayout;
import java.awt.Graphics;
import java.awt.Graphics2D;
import java.awt.GridLayout;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.awt.image.BufferedImage;
import java.io.File;

import javax.imageio.ImageIO;
import javax.swing.BorderFactory;
import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JPanel;
import javax.swing.JSlider;
import javax.swing.event.ChangeEvent;
import javax.swing.event.ChangeListener;

public class HoughUI extends JFrame implements ActionListener, ChangeListener {
	/**
	 * 
	 */
	public static final String CMD_LINE = "Line Detection";
	public static final String CMD_CIRCLE = "Circle Detection";
	private static final long serialVersionUID = 1L;
	private BufferedImage sourceImage;
// 	private BufferedImage houghImage;
	private BufferedImage resultImage;
	private JButton lineBtn;
	private JButton circleBtn;
	private JSlider radiusSlider;
	private JSlider numberSlider;
	public HoughUI(String imagePath)
	{
		super("GloomyFish-Image Process Demo");
		try{
			File file = new File(imagePath);
			sourceImage = ImageIO.read(file);
		} catch(Exception e){
			e.printStackTrace();
		}
		initComponent();
	}
	
	private void initComponent() {
		int RADIUS_MIN = 1;
		int RADIUS_INIT = 1;
		int RADIUS_MAX = 51;
		lineBtn = new JButton(CMD_LINE);
		circleBtn = new JButton(CMD_CIRCLE);
		radiusSlider = new JSlider(JSlider.HORIZONTAL, RADIUS_MIN, RADIUS_MAX, RADIUS_INIT);
		radiusSlider.setMajorTickSpacing(10);
		radiusSlider.setMinorTickSpacing(1);
		radiusSlider.setPaintTicks(true);
		radiusSlider.setPaintLabels(true);
		numberSlider = new JSlider(JSlider.HORIZONTAL, RADIUS_MIN, RADIUS_MAX, RADIUS_INIT);
		numberSlider.setMajorTickSpacing(10);
		numberSlider.setMinorTickSpacing(1);
		numberSlider.setPaintTicks(true);
		numberSlider.setPaintLabels(true);
		
		JPanel sliderPanel = new JPanel();
		sliderPanel.setLayout(new GridLayout(1, 2));
		sliderPanel.setBorder(BorderFactory.createTitledBorder("Settings:"));
		sliderPanel.add(radiusSlider);
		sliderPanel.add(numberSlider);
		JPanel btnPanel = new JPanel();
		btnPanel.setLayout(new FlowLayout(FlowLayout.RIGHT));
		btnPanel.add(lineBtn);
		btnPanel.add(circleBtn);
		
		
		JPanel imagePanel = new JPanel(){

			private static final long serialVersionUID = 1L;

			protected void paintComponent(Graphics g) {
				if(sourceImage != null)
				{
					Graphics2D g2 = (Graphics2D) g;
					g2.drawImage(sourceImage, 10, 10, sourceImage.getWidth(), sourceImage.getHeight(),null);
					g2.setPaint(Color.BLUE);
					g2.drawString("原圖", 10, sourceImage.getHeight() + 30);
					if(resultImage != null)
					{
						g2.drawImage(resultImage, resultImage.getWidth() + 20, 10, resultImage.getWidth(), resultImage.getHeight(), null);
						g2.drawString("最終結果,紅色是檢測結果", resultImage.getWidth() + 40, sourceImage.getHeight() + 30);
					}
				}
			}
			
		};
		this.getContentPane().setLayout(new BorderLayout());
		this.getContentPane().add(sliderPanel, BorderLayout.NORTH);
		this.getContentPane().add(btnPanel, BorderLayout.SOUTH);
		this.getContentPane().add(imagePanel, BorderLayout.CENTER);
		
		// setup listener
		this.lineBtn.addActionListener(this);
		this.circleBtn.addActionListener(this);
		this.numberSlider.addChangeListener(this);
		this.radiusSlider.addChangeListener(this);
	}
	
	public static void main(String[] args)
	{
		String filePath = System.getProperty ("user.home") + "/Desktop/" + "zhigang/hough-test.png";
		HoughUI frame = new HoughUI(filePath);
		// HoughUI frame = new HoughUI("D:\\image-test\\lines.png");
		frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
		frame.setPreferredSize(new Dimension(800, 600));
		frame.pack();
		frame.setVisible(true);
	}

	@Override
	public void actionPerformed(ActionEvent e) {
		if(e.getActionCommand().equals(CMD_LINE))
		{
			HoughFilter filter = new HoughFilter(HoughFilter.LINE_TYPE);
			resultImage = filter.filter(sourceImage, null);
			this.repaint();
		}
		else if(e.getActionCommand().equals(CMD_CIRCLE))
		{
			HoughFilter filter = new HoughFilter(HoughFilter.CIRCLE_TYPE);
			resultImage = filter.filter(sourceImage, null);
			// resultImage = filter.getHoughSpaceImage(sourceImage, null);
			this.repaint();
		}
		
	}

	@Override
	public void stateChanged(ChangeEvent e) {
		// TODO Auto-generated method stub
		
	}
}

五:霍夫變換檢測圓與直線的圖像預處理

 

使用霍夫變換檢測圓與直線時候,一定要對圖像進行預處理,灰度化以后,提取

圖像的邊緣使用非最大信號壓制得到一個像素寬的邊緣, 這個步驟對霍夫變

換非常重要.否則可能導致霍夫變換檢測的嚴重失真.

第一次用Mac發博文,編輯不好請見諒!

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM