GCD
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4291 Accepted Submission(s): 1502
Problem Description
Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number pairs.
Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.
Yoiu can assume that a = c = 1 in all test cases.
Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.
Yoiu can assume that a = c = 1 in all test cases.
Input
The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases.
Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
Output
For each test case, print the number of choices. Use the format in the example.
Sample Input
2 1 3 1 5 1 1 11014 1 14409 9
Sample Output
Case 1: 9 Case 2: 736427
Hint
For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).
Source
Recommend
wangye
前幾天用容斥原理寫過這題:
http://www.cnblogs.com/kuangbin/p/3269182.html
速度比較慢。
用莫比烏斯反演快很多。
莫比烏斯反演資料:
http://wenku.baidu.com/view/542961fdba0d4a7302763ad5.html
這題求[1,n],[1,m]gcd為k的對數。而且沒有順序。
轉化之后就是[1,n/k],[1,m/k]之間互質的數的個數。
用莫比烏斯反演就很容易求了。
為了去除重復的,去掉一部分就好了;
這題求的時候還可以分段進行優化的。
具體看我的下一篇博客吧!
1 /* *********************************************** 2 Author :kuangbin 3 Created Time :2013/8/21 19:32:35 4 File Name :F:\2013ACM練習\專題學習\數學\莫比烏斯反演\HDU1695GCD.cpp 5 ************************************************ */ 6 7 #include <stdio.h> 8 #include <string.h> 9 #include <iostream> 10 #include <algorithm> 11 #include <vector> 12 #include <queue> 13 #include <set> 14 #include <map> 15 #include <string> 16 #include <math.h> 17 #include <stdlib.h> 18 #include <time.h> 19 using namespace std; 20 const int MAXN = 1000000; 21 bool check[MAXN+10]; 22 int prime[MAXN+10]; 23 int mu[MAXN+10]; 24 void Moblus() 25 { 26 memset(check,false,sizeof(check)); 27 mu[1] = 1; 28 int tot = 0; 29 for(int i = 2; i <= MAXN; i++) 30 { 31 if( !check[i] ) 32 { 33 prime[tot++] = i; 34 mu[i] = -1; 35 } 36 for(int j = 0; j < tot; j++) 37 { 38 if(i * prime[j] > MAXN) break; 39 check[i * prime[j]] = true; 40 if( i % prime[j] == 0) 41 { 42 mu[i * prime[j]] = 0; 43 break; 44 } 45 else 46 { 47 mu[i * prime[j]] = -mu[i]; 48 } 49 } 50 } 51 } 52 int main() 53 { 54 //freopen("in.txt","r",stdin); 55 //freopen("out.txt","w",stdout); 56 int T; 57 int a,b,c,d,k; 58 Moblus(); 59 scanf("%d",&T); 60 int iCase = 0; 61 while(T--) 62 { 63 iCase++; 64 scanf("%d%d%d%d%d",&a,&b,&c,&d,&k); 65 if(k == 0) 66 { 67 printf("Case %d: 0\n",iCase); 68 continue; 69 } 70 b /= k; 71 d /= k; 72 if(b > d)swap(b,d); 73 long long ans1 = 0; 74 for(int i = 1; i <= b;i++) 75 ans1 += (long long)mu[i]*(b/i)*(d/i); 76 long long ans2 = 0; 77 for(int i = 1;i <= b;i++) 78 ans2 += (long long)mu[i]*(b/i)*(b/i); 79 ans1 -= ans2/2; 80 printf("Case %d: %I64d\n",iCase,ans1); 81 } 82 return 0; 83 }