HDU 1695 GCD (莫比烏斯反演)


GCD

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4291    Accepted Submission(s): 1502


Problem Description
Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number pairs.
Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.

Yoiu can assume that a = c = 1 in all test cases.
 

 

Input
The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases.
Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
 

 

Output
For each test case, print the number of choices. Use the format in the example.
 

 

Sample Input
2 1 3 1 5 1 1 11014 1 14409 9
 

 

Sample Output
Case 1: 9 Case 2: 736427
Hint
For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).
 

 

Source
 

 

Recommend
wangye
 

 

 

前幾天用容斥原理寫過這題:

http://www.cnblogs.com/kuangbin/p/3269182.html

 

速度比較慢。

 

 

用莫比烏斯反演快很多。

 

莫比烏斯反演資料:

http://wenku.baidu.com/view/542961fdba0d4a7302763ad5.html

http://baike.baidu.com/link?url=1qQ-hkgOwDJAH4xyRcEQVoOTmHbiRCyZZ-hEJxRBQO8G0OurXNr6Rh6pYj9fhySI0MY2RKpcaSPV9X75mQv0hK

 

 

 

這題求[1,n],[1,m]gcd為k的對數。而且沒有順序。

轉化之后就是[1,n/k],[1,m/k]之間互質的數的個數。

 

用莫比烏斯反演就很容易求了。

 

 

為了去除重復的,去掉一部分就好了;

 

 

 

 

 

 

這題求的時候還可以分段進行優化的。

 

具體看我的下一篇博客吧!

 

 

 

 1 /* ***********************************************
 2 Author        :kuangbin
 3 Created Time  :2013/8/21 19:32:35
 4 File Name     :F:\2013ACM練習\專題學習\數學\莫比烏斯反演\HDU1695GCD.cpp
 5 ************************************************ */
 6 
 7 #include <stdio.h>
 8 #include <string.h>
 9 #include <iostream>
10 #include <algorithm>
11 #include <vector>
12 #include <queue>
13 #include <set>
14 #include <map>
15 #include <string>
16 #include <math.h>
17 #include <stdlib.h>
18 #include <time.h>
19 using namespace std;
20 const int MAXN = 1000000;
21 bool check[MAXN+10];
22 int prime[MAXN+10];
23 int mu[MAXN+10];
24 void Moblus()
25 {
26     memset(check,false,sizeof(check));
27     mu[1] = 1;
28     int tot = 0;
29     for(int i = 2; i <= MAXN; i++)
30     {
31         if( !check[i] )
32         {
33             prime[tot++] = i;
34             mu[i] = -1;
35         }
36         for(int j = 0; j < tot; j++)
37         {
38             if(i * prime[j] > MAXN) break;
39             check[i * prime[j]] = true;
40             if( i % prime[j] == 0)
41             {
42                 mu[i * prime[j]] = 0;
43                 break;
44             }
45             else
46             {
47                 mu[i * prime[j]] = -mu[i];
48             }
49         }
50     }
51 }
52 int main()
53 {
54     //freopen("in.txt","r",stdin);
55     //freopen("out.txt","w",stdout);
56     int T;
57     int a,b,c,d,k;
58     Moblus();
59     scanf("%d",&T);
60     int iCase = 0;
61     while(T--)
62     {
63         iCase++;
64         scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
65         if(k == 0)
66         {
67             printf("Case %d: 0\n",iCase);
68             continue;
69         }
70         b /= k;
71         d /= k;
72         if(b > d)swap(b,d);
73         long long ans1 = 0;
74         for(int i = 1; i <= b;i++)
75             ans1 += (long long)mu[i]*(b/i)*(d/i);
76         long long ans2 = 0;
77         for(int i = 1;i <= b;i++)
78             ans2 += (long long)mu[i]*(b/i)*(b/i);
79         ans1 -= ans2/2;
80         printf("Case %d: %I64d\n",iCase,ans1);
81     }
82     return 0;
83 }

 

 

 

 

 

 

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM