矩陣的快速冪是用來高效地計算矩陣的高次方的。將朴素的o(n)的時間復雜度,降到log(n)。
這里先對原理(主要運用了矩陣乘法的結合律)做下簡單形象的介紹:
一般一個矩陣的n次方,我們會通過連乘n-1次來得到它的n次冪。
但做下簡單的改進就能減少連乘的次數,方法如下:
把n個矩陣進行兩兩分組,比如:A*A*A*A*A*A => (A*A)*(A*A)*(A*A)
這樣變的好處是,你只需要計算一次A*A,然后將結果(A*A)連乘自己兩次就能得到A^6,即(A*A)^3=A^6。算一下發現這次一共乘了3次,少於原來的5次。
其實大家還可以取A^3作為一個基本單位。原理都一樣:利用矩陣乘法的結合律,來減少重復計算的次數。
以上都是取一個具體的數來作為最小單位的長度,這樣做雖然能夠改進效率,但缺陷也是很明顯的,取個極限的例子(可能有點不恰當,但基本能說明問題),當n無窮大的時候,你現在所取的長度其實和1沒什么區別。所以就需要我們找到一種與n增長速度”相適應“的”單位長度“,那這個長度到底怎么去取呢???這點是我們要思考的問題。
有了以上的知識,我們現在再來看看,到底怎么迅速地求得矩陣的N次冪。
既然要減少重復計算,那么就要充分利用現有的計算結果咯!~怎么充分利用計算結果呢???這里考慮二分的思想。。
大家首先要認識到這一點:任何一個整數N,都能用二進制來表示。。這點大家都應該知道,但其中的內涵真的很深很深(這點筆者感觸很深,在文章的最后,我將談談我對的感想)!!
計算機處理的是離散的信息,都是以0,1來作為信號的處理的。可想而知二進制在計算機上起着舉足輕重的地位。它能將模擬信號轉化成數字信號,將原來連續的實際模型,用一個離散的算法模型來解決。 好了,扯得有點多了,不過相信這寫對下面的講解還是有用的。
回頭看看矩陣的快速冪問題,我們是不是也能把它離散化呢?比如A^19 => (A^16)*(A^2)*(A^1),顯然采取這樣的方式計算時因子數將是log(n)級別的(原來的因子數是n),不僅這樣,因子間也是存在某種聯系的,比如A^4能通過(A^2)*(A^2)得到,A^8又能通過(A^4)*(A^4)得到,這點也充分利用了現有的結果作為有利條件。下面舉個例子進行說明:
現在要求A^156,而156(10)=10011100(2)
也就有A^156=>(A^4)*(A^8)*(A^16)*(A^128) 考慮到因子間的聯系,我們從二進制10011100中的最右端開始計算到最左端。細節就說到這,下面給核心代碼:
1 while(N) 2 { 3 if(N&1) 4 res=res*A; 5 n>>=1; 6 A=A*A; 7 }
里面的乘號,是矩陣乘的運算,res是結果矩陣。
第3行代碼每進行一次,二進制數就少了最后面的一個1。二進制數有多少個1就第3行代碼就執行多少次。
好吧,矩陣快速冪的講解就到這里吧。在文章我最后給出我實現快速冪的具體代碼(代碼以3*3的矩陣為例)。
現在我就說下我對二進制的感想吧:
我們在做很多”連續“的問題的時候都會用到二進制將他們離散簡化
1.多重背包問題
2.樹狀數組
3.狀態壓縮DP
……………還有很多。。。究其根本還是那句話:化連續為離散。。很多時候我們並不是為了解決一個問題而使用二進制,更多是時候是為了優化而使用它。所以如果你想讓你的程序更加能適應大數據的情況,那么學習學習二進制及其算法思想將會對你有很大幫助。
最后貼出一些代碼供大家學習,主要起演示的效果:
#include <cstdlib> #include <cstring> #include <cstdio> #include <iostream> using namespace std; int N; struct matrix { int a[3][3]; }origin,res; matrix multiply(matrix x,matrix y) { matrix temp; memset(temp.a,0,sizeof(temp.a)); for(int i=0;i<3;i++) { for(int j=0;j<3;j++) { for(int k=0;k<3;k++) { temp.a[i][j]+=x.a[i][k]*y.a[k][j]; } } } return temp; } void init() { printf("隨機數組如下:\n"); for(int i=0;i<3;i++) { for(int j=0;j<3;j++) { origin.a[i][j]=rand()%10; printf("%8d",origin.a[i][j]); } printf("\n"); } printf("\n"); memset(res.a,0,sizeof(res.a)); res.a[0][0]=res.a[1][1]=res.a[2][2]=1; //將res.a初始化為單位矩陣 } void calc(int n) { while(n) { if(n&1) res=multiply(res,origin); n>>=1; origin=multiply(origin,origin); } printf("%d次冪結果如下:\n",n); for(int i=0;i<3;i++) { for(int j=0;j<3;j++) printf("%8d",res.a[i][j]); printf("\n"); } printf("\n"); } int main() { while(cin>>N) { init(); calc(N); } return 0; }
super_boy原創文章,轉載請注明出處http://www.cnblogs.com/yan-boy/archive/2012/11/29/2795294.html