Table of Contents
1 將Matlab中公式轉化為LaTeX公式
1.1 已知公式的轉換
'$$\int_0^x\!\int_y dF(u,v)$$'
1.2 未知公式的轉換
latex(taylor(sin(t), 16))
運行結果為:
>> latex(taylor(sin(t),16)) ans = - \frac{t^{15}}{1307674368000} + \frac{t^{13}}{6227020800} - \frac{t^{11}}{39916800} + \frac{t^9}{362880} - \frac{t^7}{5040} + \frac{t^5}{120} - \frac{t^3}{6} + t
結果為字符串類型。
2 將Matlab運行結果的公式顯示為適合閱讀形式
在命令行界面下不是能顯示出來適合閱讀的公式的,要想顯示必須要圖形界面下:
text('Interpreter','latex',... 'String','$$\int_0^x\!\int_y dF(u,v)$$',... 'position',[.5 .5],... 'fontsize',16)
text(.1,.5,['\fontsize{16}black {\color{magenta}magenta '... '\color[rgb]{0 .5 .5}teal \color{red}red} black again'])
text(0.05,0.2,['$$',latex(taylor(sin(t), 16)),'$$'],'interpreter','latex','fontsize',12);
2.1 text函數各個屬性
- fontsize 字體大小
- positin 后跟坐標位置
- string 后跟要顯示的latex字符串
- 幾乎所有的latex命令在此都可在此使用,包括字體大小\fontsize,顏色\color,字體\ …
fontname,各種字體屬性:黑體\bf 斜體\it 羅馬字體\rm等
- 幾乎所有的latex命令在此都可在此使用,包括字體大小\fontsize,顏色\color,字體\ …
- interpreter 后跟編譯選項,此處用latex或者tex
3 在線轉換網址
如果本機安裝latex編譯器(CTeX或者Texlive)可以本地編譯生成公式,也可以利用在線latex公式編譯網站來編譯:codecogs …
選擇Equation Editor ->Integrated …
Editor,然后把剛才生成的latex字符串粘貼到公式框中,會自動在輸入框下面動態生成相應地公式,然后單擊下面的Download Image即可保存到本地。
也可以在生成公式上右擊復制圖片鏈接地址,之后便可以在自己的博客中或論壇上復制該地址,便可顯示相應地公式。
例如上面的:
- \frac{t^{15}}{1307674368000} + \frac{t^{13}}{6227020800} - \frac{t^{11}}{39916800} + \frac{t^9}{362880} - \frac{t^7}{5040} + \frac{t^5}{120} - \frac{t^3}{6} + t
生成如下公式:
4 實踐
Example ― Using LaTeX to Format Math Equations The LaTeX markup language evolved from TEX, and has a superset of its capabilities. LaTeX gives you more elaborate control over specifying and styling mathematical symbols. The following example illustrates some LaTeX typesetting capabilities when used with the text function. Because the default interpreter is for TEX, you need to specify the parameter-value pair 'interpreter','latex' when typesetting equations such as are contained in the following script: %% LaTeX Examples--Some well known equations rendered in LaTeX % figure('color','white','units','inches','position',[2 2 4 6.5]); axis off %% A matrix; LaTeX code is % \hbox {magic(3) is } \left( {\matrix{ 8 & 1 & 6 \cr % 3 & 5 & 7 \cr 4 & 9 & 2 } } \right) h(1) = text('units','inch', 'position',[.2 5], ... 'fontsize',14, 'interpreter','latex', 'string',... ['$$\hbox {magic(3) is } \left( {\matrix{ 8 & 1 & 6 \cr'... '3 & 5 & 7 \cr 4 & 9 & 2 } } \right)$$']); %% A 2-D rotation transform; LaTeX code is % \left[ {\matrix{\cos(\phi) & -\sin(\phi) \cr % \sin(\phi) & \cos(\phi) \cr}} % \right] \left[ \matrix{x \cr y} \right] % % $$ \left[ {\matrix{\cos(\phi) % & -\sin(\phi) \cr \sin(\phi) & \cos(\phi) % \cr}} % \right] \left[ \matrix{x \cr y} \right] $$ % h(2) = text('units','inch', 'position',[.2 4], ... 'fontsize',14, 'interpreter','latex', 'string',... ['$$\left[ {\matrix{\cos(\phi) & -\sin(\phi) \cr'... '\sin(\phi) & \cos(\phi) \cr}} \right]'... '\left[ \matrix{x \cr y} \right]$$']); %% The Laplace transform; LaTeX code is % L\{f(t)\} \equiv F(s) = \int_0^\infty\!\!{e^{-st}f(t)dt} % $$ L\{f(t)\} \equiv F(s) = \int_0^\infty\!\!{e^{-st}f(t)dt} $$ % The Initial Value Theorem for the Laplace transform: % \lim_{s \rightarrow \infty} sF(s) = \lim_{t \rightarrow 0} f(t) % $$ \lim_{s \rightarrow \infty} sF(s) = \lim_{t \rightarrow 0} % f(t) $$ % h(3) = text('units','inch', 'position',[.2 3], ... 'fontsize',14, 'interpreter','latex', 'string',... ['$$L\{f(t)\} \equiv F(s) = \int_0^\infty\!\!{e^{-st}'... 'f(t)dt}$$']); %% The definition of e; LaTeX code is % e = \sum_{k=0}^\infty {1 \over {k!} } % $$ e = \sum_{k=0}^\infty {1 \over {k!} } $$ % h(4) = text('units','inch', 'position',[.2 2], ... 'fontsize',14, 'interpreter','latex', 'string',... '$$e = \sum_{k=0}^\infty {1 \over {k!} } $$'); %% Differential equation % The equation for motion of a falling body with air resistance % LaTeX code is % m \ddot y = -m g + C_D \cdot {1 \over 2} \rho {\dot y}^2 \cdot A % $$ m \ddot y = -m g + C_D \cdot {1 \over 2} \rho {\dot y}^2 % \cdot A $$ % h(5) = text('units','inch', 'position',[.2 1], ... 'fontsize',14, 'interpreter','latex', 'string',... ['$$m \ddot y = -m g + C_D \cdot {1 \over 2}'... '\rho {\dot y}^2 \cdot A$$']); %% Integral Equation; LaTeX code is % \int_{0}^{\infty} x^2 e^{-x^2} dx = \frac{\sqrt{\pi}}{4} % $$ \int_{0}^{\infty} x^2 e^{-x^2} dx = \frac{\sqrt{\pi}}{4} $$ % h(6) = text('units','inch', 'position',[.2 0], ... 'fontsize',14, 'interpreter','latex', 'string',... '$$\int_{0}^{\infty} x^2 e^{-x^2} dx = \frac{\sqrt{\pi}}{4}$$');
Date: 2012-05-17 22:13:32
HTML generated by org-mode 6.33x in emacs 23