IPC進程間通信(Inter-Process Communication)就是指多個進程之間相互通信,交換信息的方法。Linux IPC基本上都是從Unix平台上繼承而來的。主要包括最初的Unix IPC,System V IPC以及基於Socket的IPC。另外,Linux也支持POSIX IPC。
System V,BSD,POSIX
System V是Unix操作系統最早的商業發行版之一。它最初由AT&T(American Telephone & Telegraph)開發,最早在1983年發布。System V主要發行了4個版本,其中SVR4(System V Release 4)是最成功的版本。BSD(Berkeley Software Distribution,有時也被稱為Berkeley Unix)是加州大學於1977至1995年間開發的。在19世紀八十年代至九十年代之間,System V和BSD代表了Unix的兩種主要的操作風格。它們的主要區別如下:
系統 System V BSD
root腳本位置 /etc/init.d/ /etc/rc.d/
默認shell Bshell Cshell
文件系統數據 /etc/mnttab /etc/mtab
內核位置 /UNIX /vmUnix
打印機設備 lp rlp
字符串函數 memcopy bcopy
終端初始化設置文件 /etc/initab /etc/ttys
終端控制 termio termios
Linux系統的操作風格往往介於這兩種風格之間。
POSIX(Portable Operating System Interface [for Unix])是由IEEE(Institute of Electrical and Electronics Engineers,電子電氣工程協會)開發的。現有的大部分Unix都遵循POSIX標准,而Linux從一開始就遵循POSIX標准。
最初的Unix IPC
1、信號
信號是Unix/Linux系統在一定條件下生成的事件。信號是一種異步通信機制,進程不需要執行任何操作來等待信號的到達。信號異步通知接收信號的進程發生了某個事件,然后操作系統將會中斷接收到信號的進程的執行,轉而去執行相應的信號處理程序。
(1)注冊信號處理函數
#include <signal.h>
/*typedef void (*sighandler_t)(int); sighandler_t signal(int signum,sighandler_t handler);*/
* void (*signal(int signum, void (*handler)(int)))(int); //SIG_IGN && SIG_DFL
* int sigaction(int signum, const struct sigaction *act,struct sigaction *oldact);
(2)發送信號
#include <signal.h>
* int kill(pid_t pid,int sig); //#include <sys/types.h>
* int raise(int sig); //kill(getpid(),sig);
* unsigned int alarm(unsigned int seconds); //(#include <unistd.h>) seconds秒后,向進程本身發送SIGALRM信號。
(3)信號集
信號集被定義為:typedef struct {unsigned long sig[_NSIG_WORDS];} sigset_t;
* int sigaddset(sigset_t *set,int sig);
* int sigemptyset(sigset_t *set);
2、管道(Pipe)
管道用來連接不同進程之間的數據流。
(1)在兩個程序之間傳遞數據的最簡單的方法是使用popen()和pclose()函數:
#include <stdio.h>
FILE *popen(const char *command, const char *open_mode);
int pclose(FILE *stream);
popen()函數首先調用一個shell,然后把command作為參數傳遞給shell。這樣每次調用popen()函數都需要啟動兩個進程;但是由於在Linux中,所有的參數擴展(parameter expansion)都是由shell執行的,這樣command中包含的所有參數擴展都可以在command程序啟動之前完成。
(2)pipe()函數:
#include <unistd.h>
int pipe(int pipefd[2]);
popen()函數只能返回一個管道描述符,並且返回的是文件流(file stream),可以使用函數fread()和fwrite()來訪問。pipe()函數可以返回兩個管道描述符:pipefd[0]和pipefd[1],任何寫入pipefd[1]的數據都可以從pipefd[0]讀回;pipe()函數返回的是文件描述符(file descriptor),因此只能使用底層的read()和write()系統調用來訪問。pipe()函數通常用來實現父子進程之間的通信。
(3)命名管道:FIFO
#include <sys/types.h>
#include <sys/stat.h>
int mkfifo(const char *fifo_name, mode_t mode);
前面兩種管道只能用在相關的程序之間,使用命名管道可以解決這個問題。在使用open()打開FIFO時,mode中不能包含O_RDWR。mode最常用的是O_RDONLY,O_WRONLY與O_NONBLOCK的組合。O_NONBLOCK影響了read()和write()在FIFO上的執行方式。
PS:要想查看庫函數用法,最可靠的資料來自Linux manual page:
$sudo apt-get install manpages-dev
$man 3 function_name
System V IPC
System V IPC指的是AT&T在System V.2發行版中引入的三種進程間通信工具:(1)信號量,用來管理對共享資源的訪問 (2)共享內存,用來高效地實現進程間的數據共享 (3)消息隊列,用來實現進程間數據的傳遞。我們把這三種工具統稱為System V IPC的對象,每個對象都具有一個唯一的IPC標識符(identifier)。要保證不同的進程能夠獲取同一個IPC對象,必須提供一個IPC關鍵字(IPC key),內核負責把IPC關鍵字轉換成IPC標識符。
System V IPC具有相似的語法,一般操作如下:
(1)選擇IPC關鍵字,可以使用如下三種方式:
a)IPC_PRIVATE。由內核負責選擇一個關鍵字然后生成一個IPC對象並把IPC標識符直接傳遞給另一個進程。
b)直接選擇一個關鍵字。
c)使用ftok()函數生成一個關鍵字。
(2)使用semget()/shmget()/msgget()函數根據IPC關鍵字key和一個標志flag創建或訪問IPC對象。如果key是IPC_PRIVATE;或者key尚未與已經存在的IPC對象相關聯且flag中包含IPC_CREAT標志,那么就會創建一個全新的IPC對象。
(3)使用semctl()/shmctl()/msgctl()函數修改IPC對象的屬性。
(4)使用semctl()/shmctl()/msgctl()函數和IPC_RMID標志銷毀IPC實例。
System V IPC為每個IPC對象設置了一個ipc_perm結構體並在創建IPC對象的時候進行初始化。這個結構體中定義了IPC對象的訪問權限和所有者:
struct ipc_perm{
uid_t uid; //所有者的用戶id
gid_t gid; //所有者的組id
uid_t cuid; //創建者的用戶id
gid_t cgid; //創建者的組id
mode_t mode; //訪問模式
…
};
shell中管理IPC對象的命令是ipcs、ipcmk和ipcrm。
1、信號量(Semaphores)
System V的信號量集表示的是一個或多個信號量的集合。內核為每個信號量集維護一個semid_ds數據結構,而信號量集中的每個信號量使用一個無名結構體表示,這個結構體至少包含以下成員:
struct{
unsigned short semval;//信號量值,總是>=0
pid_t sempid; //上一次操作的pid
…
};
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
(1)創建或訪問信號量
* int semget(key_t key,int nsems,int flag);
nsems指定信號量集中信號量的個數,如果只是獲取信號量集的標識符(而非新建),那么nsems可以為0。flag的低9位作為信號量的訪問權限位,類似於文件的訪問權限;如果flag中同時指定了IPC_CREAT和IPC_EXCL,那么如果key已與現存IPC對象想關聯的話,函數將會返回EEXIST錯誤。例如,flag可以為IPC_CREAT|0666。
(2)控制信號量集
* int semctl(int semid,int semnum,int cmd,union semun arg);
對semid信號量集合執行cmd操作;cmd常用的兩個值是:SETVAL初始化第semnum個信號量的值為arg.val;IPC_RMID刪除信號量。
(3)對一個或多個信號量進行操作
* int semop(int semid,struct sembuf *sops,unsigned nsops);
* struct sembuf{
unsigned short sem_num; //信號量索引
short sem_op; //對信號量進行的操作,常用的兩個值為-1和+1,分別代表P、V操作
short sem_flag; //比較重要的值是SEM_UNDO:當進程結束時,相應的操作將被取消;同時,如果進程結束時沒有釋放資源的話,系統會自動釋放
};
2、共享內存
共享內存允許兩個或多個進程共享一定的存儲區,因為不需要拷貝數據,所以這是最快的一種IPC。
#include <sys/ipc.h>
#include <sys/shm.h>
(1)創建或訪問共享內存
* int shmget(key_t key,size_t size,int shmflg);
(2)附加共享內存到進程的地址空間
* void *shmat(int shmid,const void *shmaddr,int shmflg);//shmaddr通常為NULL,由系統選擇共享內存附加的地址;shmflg可以為SHM_RDONLY
(3)從進程的地址空間分離共享內存
* int shmdt(const void *shmaddr); //shmaddr是shmat()函數的返回值
(4)控制共享內存
* int shmctl(int shmid,int cmd,struct shmid_ds *buf);
* struct shmid_ds{
struct ipc_perm shm_perm;
…
};
cmd的常用取值有:(a)IPC_STAT獲取當前共享內存的shmid_ds結構並保存在buf中(2)IPC_SET使用buf中的值設置當前共享內存的shmid_ds結構(3)IPC_RMID刪除當前共享內存
3、消息隊列
消息隊列保存在內核中,是一個由消息組成的鏈表。
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>
(1)創建或訪問消息隊列
* int msgget(key_t key,int msgflg);
(2)操作消息隊列
* int msgsnd(int msqid,const void *msg,size_t nbytes,int msgflg);
msg指向的結構體必須以一個long int成員開頭,作為msgrcv()的消息類型,必須大於0。nbytes指的是msg指向結構體的大小,但不包括long int部分的大小
* ssize_t msgrcv(int msqid,void *msg,size_t nbytes,long msgtype,int msgflg);
如果msgtype是0,就返回消息隊列中的第一個消息;如果是正整數,就返回隊列中的第一個該類型的消息;如果是負數,就返回隊列中具有最小值的第一個消息,並且該最小值要小於等於msgtype的絕對值。
(3)控制消息隊列
* int msgctl(int msqid,int cmd,struct msqid_ds *buf);
* struct msqid_ds{
struct ipc_perm msg_perm;
…
};
Socket
套接字(Socket)是由Berkeley在BSD系統中引入的一種基於連接的IPC,是對網絡接口(硬件)和網絡協議(軟件)的抽象。它既解決了無名管道只能在相關進程間單向通信的問題,又解決了網絡上不同主機之間無法通信的問題。
套接字有三個屬性:域(domain)、類型(type)和協議(protocol),對應於不同的域,套接字還有一個地址(address)來作為它的名字。
域(domain)指定了套接字通信所用到的協議族,最常用的域是AF_INET,代表網絡套接字,底層協議是IP協議。對於網絡套接字,由於服務器端有可能會提供多種服務,客戶端需要使用IP端口號來指定特定的服務。AF_UNIX代表本地套接字,使用Unix/Linux文件系統實現。
IP協議提供了兩種通信手段:流(streams)和數據報(datagrams),對應的套接字類型(type)分別為流式套接字和數據報套接字。流式套接字(SOCK_STREAM)用於提供面向連接、可靠的數據傳輸服務。該服務保證數據能夠實現無差錯、無重復發送,並按順序接收。流式套接字使用TCP協議。數據報套接字(SOCK_DGRAM)提供了一種無連接的服務。該服務並不能保證數據傳輸的可靠性,數據有可能在傳輸過程中丟失或出現數據重復,且無法保證順序地接收到數據。數據報套接字使用UDP協議。
一種類型的套接字可能可以使用多於一種的協議來實現,套接字的協議(protocol)屬性用於指定一種特定的協議。
總結:
System V IPC API
1,消息隊列
int ftok(const char *pathname, int prj_id);
int msgget(key_t key,int msgflag);
int msgsnd(int msqid,const void *msgp,size_t msgsz,int msgflg);
int msgrcv(int msqid,void *msgp,size_t msgsz,long msgtyp,int msgflg);
2,信號量
int semget(key_t key,int nsems,int semflag);
int semctl(int semid,int semnum,int cmd,…);
int semop(int semid,struct sembuf *sops,unsigned nsops,struct timespec *timeout);
3,共享內存
int shmget(key_t key,size_t size,int shmflag);
int shmctl(int shmid,int cmd,struct shmid_ds *buf);
POSIX IPC API