轉自http://blog.sina.com.cn/s/blog_587c016a0100nfeq.html
linux下進程間通信IPC的幾種主要手段簡介:
管道(Pipe)及有名管道(named pipe):管道可用於具有親緣關系進程間的通信,有名管道克服了管道沒有名字的限制,因此,除具有管道所具有的功能外,它還允許無親緣關系進程間的通信;
信號(Signal):信號是比較復雜的通信方式,用於通知接受進程有某種事件發生,除了用於進程間通信外,進程還可以發送信號給進程本身;linux除了支持Unix早期信號語義函數signal外,還支持語義符合Posix.1標准的信號函數sigaction(實際上,該函數是基於BSD的,BSD為了實現可靠信號機制,又能夠統一對外接口,用sigaction函數重新實現了signal函數);
報文(Message)隊列(消息隊列):消息隊列是消息的鏈接表,包括Posix消息隊列system V消息隊列。有足夠權限的進程可以向隊列中添加消息,被賦予讀權限的進程則可以讀走隊列中的消息。消息隊列克服了信號承載信息量少,管道只能承載無格式字節流以及緩沖區大小受限等缺點。
共享內存:使得多個進程可以訪問同一塊內存空間,是最快的可用IPC形式。是針對其他通信機制運行效率較低而設計的。往往與其它通信機制,如信號量結合使用,來達到進程間的同步及互斥。
信號量(semaphore):主要作為進程間以及同一進程不同線程之間的同步手段。
套接口(Socket):更為一般的進程間通信機制,可用於不同機器之間的進程間通信。起初是由Unix系統的BSD分支開發出來的,但現在一般可以移植到其它類Unix系統上:Linux和System V的變種都支持套接字。
管道
管道兩端可分別用描述字fd[0]以及fd[1]來描述,需要注意的是,管道的兩端是固定了任務的。即一端只能用於讀,由描述字fd[0]表示,稱其為管道讀端;另一端則只能用於寫,由描述字fd[1]來表示,稱其為管道寫端。如果試圖從管道寫端讀取數據,或者向管道讀端寫入數據都將導致錯誤發生。一般文件的I/O函數都可以用於管道,如close、read、write等等。
- 只支持單向數據流;
- 只能用於具有親緣關系的進程之間;
- 沒有名字;
- 管道的緩沖區是有限的(管道制存在於內存中,在管道創建時,為緩沖區分配一個頁面大小);
- 管道所傳送的是無格式字節流,這就要求管道的讀出方和寫入方必須事先約定好數據的格式,比如多少字節算作一個消息(或命令、或記錄)等等;
管道應用的一個重大限制是它沒有名字,因此,只能用於具有親緣關系的進程間通信,在有名管道(named pipe或FIFO)提出后,該限制得到了克服。FIFO不同於管道之處在於它提供一個路徑名與之關聯,以FIFO的文件形式存在於文件系統中。這樣,即使與FIFO的創建進程不存在親緣關系的進程,只要可以訪問該路徑,就能夠彼此通過FIFO相互通信(能夠訪問該路徑的進程以及FIFO的創建進程之間),因此,通過FIFO不相關的進程也能交換數據。值得注意的是,FIFO嚴格遵循先進先出(first in first out),對管道及FIFO的讀總是從開始處返回數據,對它們的寫則把數據添加到末尾。它們不支持諸如lseek()等文件定位操作。
管道常用於兩個方面:(1)在shell中時常會用到管道(作為輸入輸入的重定向),在這種應用方式下,管道的創建對於用戶來說是透明的;(2)用於具有親緣關系的進程間通信,用戶自己創建管道,並完成讀寫操作。
FIFO可以說是管道的推廣,克服了管道無名字的限制,使得無親緣關系的進程同樣可以采用先進先出的通信機制進行通信。
管道和FIFO的數據是字節流,應用程序之間必須事先確定特定的傳輸"協議",采用傳播具有特定意義的消息。
要靈活應用管道及FIFO,理解它們的讀寫規則是關鍵。
消息隊列
消息隊列就是一個消息的鏈表。可以把消息看作一個記錄,具有特定的格式以及特定的優先級。對消息隊列有寫權限的進程可以向中按照一定的規則添加新消息;對消息隊列有讀權限的進程則可以從消息隊列中讀走消息。消息隊列是隨內核持續的。信號是隨進程持續的。
每個消息隊列的容量(所能容納的字節數)都有限制,該值因系統不同而不同。
消息隊列與管道以及有名管道相比,具有更大的靈活性,首先,它提供有格式字節流,有利於減少開發人員的工作量;其次,消息具有類型,在實際應用中,可作為優先級使用。這兩點是管道以及有名管道所不能比的。同樣,消息隊列可以在幾個進程間復用,而不管這幾個進程是否具有親緣關系,這一點與有名管道很相似;但消息隊列是隨內核持續的,與有名管道(隨進程持續)相比,生命力更強,應用空間更大。
信號
信號是進程間通信機制中唯一的異步通信機制,可以看作是異步通知,通知接收信號的進程有哪些事情發生了。信號機制經過POSIX實時擴展后,功能更加強大,除了基本通知功能外,還可以傳遞附加信息。
信號量
1、 一次系統調用semop可同時操作的信號燈數目SEMOPM,semop中的參數nsops如果超過了這個數目,將返回E2BIG錯誤。SEMOPM的大小特定與系統,redhat 8.0為32。
2、 信號燈的最大數目:SEMVMX,當設置信號燈值超過這個限制時,會返回ERANGE錯誤。在redhat 8.0中該值為32767。
3、 系統范圍內信號燈集的最大數目SEMMNI以及系統范圍內信號燈的最大數目SEMMNS。超過這兩個限制將返回ENOSPC錯誤。redhat 8.0中該值為32000。
4、 每個信號燈集中的最大信號燈數目SEMMSL,redhat 8.0中為250。 SEMOPM以及SEMVMX是使用semop調用時應該注意的;SEMMNI以及SEMMNS是調用semget時應該注意的。SEMVMX同時也是semctl調用應該注意的。
所以如果是一個share buffer,如果buffer很大的話,信號燈也是不能用的。
共享內存
共享內存可以說是最有用的進程間通信方式,也是最快的IPC形式。兩個不同進程A、B共享內存的意思是,同一塊物理內存被映射到進程A、B各自的進程地址空間。進程A可以即時看到進程B對共享內存中數據的更新,反之亦然。由於多個進程共享同一塊內存區域,必然需要某種同步機制,互斥鎖和信號量都可以。
采用共享內存通信的一個顯而易見的好處是效率高,因為進程可以直接讀寫內存,而不需要任何數據的拷貝。對於像管道和消息隊列等通信方式,則需要在內核和用戶空間進行四次的數據拷貝,而共享內存則只拷貝兩次數據[1]:一次從輸入文件到共享內存區,另一次從共享內存區到輸出文件。實際上,進程之間在共享內存時,並不總是讀寫少量數據后就解除映射,有新的通信時,再重新建立共享內存區域。而是保持共享區域,直到通信完畢為止,這樣,數據內容一直保存在共享內存中,並沒有寫回文件。共享內存中的內容往往是在解除映射時才寫回文件的。因此,采用共享內存的通信方式效率是非常高的。
socket
I/O復用提供一種能力,這種能力使得當一個I/O條件滿足時,進程能夠及時得到這個信息。I/O復用一般應用在進程需要處理多個描述字的場合。它的一個優勢在於,進程不是阻塞在真正的I/O調用上,而是阻塞在select()調用上,select()可以同時處理多個描述字,如果它所處理的所有描述字的I/O都沒有處於准備好的狀態,那么將阻塞;如果有一個或多個描述字I/O處於准備好狀態,則select()不阻塞,同時會根據准備好的特定描述字采取相應的I/O操作。
前面主要介紹的是PF_INET通信域,實現網際間的進程間通信。基於Unix通信域(調用socket時指定通信域為PF_LOCAL即可)的套接口可以實現單機之間的進程間通信。采用Unix通信域套接口有幾個好處:Unix通信域套接口通常是TCP套接口速度的兩倍;另一個好處是,通過Unix通信域套接口可以實現在進程間傳遞描述字。所有可用描述字描述的對象,如文件、管道、有名管道及套接口等,在我們以某種方式得到該對象的描述字后,都可以通過基於Unix域的套接口來實現對描述字的傳遞。
原始套接口提供一般套接口所不提供的功能:
- 原始套接口可以讀寫一些用於控制的控制協議分組,如ICMPv4等,進而可實現一些特殊功能。
- 原始套接口可以讀寫特殊的IPv4數據包。內核一般只處理幾個特定協議字段的數據包,那么一些需要不同協議字段的數據包就需要通過原始套接口對其進行讀寫;
- 通過原始套接口可以構造自己的Ipv4頭部,也是比較有意思的一點。
- 創建原始套接口需要root權限。
對數據鏈路層的訪問,使得用戶可以偵聽本地電纜上的所有分組,而不需要使用任何特殊的硬件設備,在linux下讀取數據鏈路層分組需要創建SOCK_PACKET類型的套接口,並需要有root權限