已知$x,y,z$为非负实数,满足$(x+\dfrac{1}{2})^2+(y+1)^2+(z+\dfrac{3}{2})^2=\dfrac{27}{4}$,则$x+y+z$的最小值为______ ...
已知$x,y,z$为非负实数,满足$(x+\dfrac{1}{2})^2+(y+1)^2+(z+\dfrac{3}{2})^2=\dfrac{27}{4}$,则$x+y+z$的最小值为______ ...
(2014天津)已知函数$f(x)=x-ae^x(a\in R)$,有两个零点$x_1,x_2,(x_1<x_2)$(1)求$a$的取值范围;(2)证明:$\dfrac{x_2}{x_1}$随着 ...
已知$\theta \in[0,2\pi]$求$2\cos\theta-\sin\theta-\dfrac{\sin\theta+\sqrt{5}}{\cos\theta+\sqrt{5}}$的最小值 ...
设实数$\lambda >0$,若对任意的$x\in(e^2,+\infty)$,不等式$\lambda e^{\lambda x}-\ln x>0$恒成立,则$\lambda$的最小值为 ...
若实数$a,b$满足$\dfrac{5}{2}a-\dfrac{3}{2}b-2\le\ln(a+b)+\ln(a-b)$, 求$5a-3b$=______ 注意到:$\ln x\le x-1(x& ...
如图,设点$P$时抛物线$C_1:y^2=4x$上的动点,过$P$作圆$C_2:(x-3)^2+y^2=r^2(r>0)$的两条切线交抛物线$C_1$于$A,B$两点,其中$M,N$为切点.若过 ...