Jain 现身说法,用通俗易懂的语言对遗传算法作了一个全面而扼要的概述,并列举了其在多个领域的实际应 ...
Jain 现身说法,用通俗易懂的语言对遗传算法作了一个全面而扼要的概述,并列举了其在多个领域的实际应 ...
NSGAII(带精英策略的非支配排序的遗传算法),是基于遗传算法的多目标优化算法,是基于pareto最优解讨论的多目标优化,下面介绍pareto(帕累托)最优解的相关概念。 Paerot支配关系 Pareto最优解定义 多目标优化问题与单目标优化问题有很大 ...
遗传算法优化函数y=10*sin(5*x)+7*abs(x-5)+10,这个函数图像为: 下面看代码: (1)首先看主函数 function main() clear; clc; %种群大小 popsize=100; %二进制编码长度 chromlength=10; %交叉概率 ...
ObjFunction.py GAIndividual.py GeneticAlgorithm.py 运行程序: ...
以前搞数学建模的时候,研究过(其实也不算是研究,只是大概了解)一些人工智能算法,比如前面已经说过的粒子群算法(PSO),还有著名的遗传算法(GA),模拟退火算法(SA),蚁群算法(ACA)等。当时懂得非常浅,只会copy别人的代码(一般是MATLAB),改一改值和参数,东拼西凑就拿 ...
引自:http://www.cnhup.com/index.php/archives/elitist-preservation-in-genetic-algorithm/ 遗传算法(Genetic Algorithm)中的基因,并不一定真实地反映了待求解问题的本质,因此各个基因之间未必 ...
遗传算法,是最常用的解决优化问题的算法,是最早的群智能算法。遗传算法中主要包括,选择、交叉、变异算子,其中对DNA个体的编码方式分为实数编码和二进制编码等。今日由于学习和工作需要对该算法进行了一些了解,对该算法中常用的竞赛选择方式做如下笔记: 遗传算法中的竞赛选择方式是一种放回抽样,几元 ...
近段时间因为需要完成任务所以在研究群智能算法,在这过程中需要不断的拿一些测试函数去做实验,为了以后使用方便在这里将常用的一些测试函数做下记录。 1.Rastrigin's 函数 对于有两个独 ...
遗传算法,核心是达尔文 优胜劣汰适者生存的进化理论的思想。 我们都知道一个种群,通过长时间的繁衍,种群的基因会向着更适应环境的趋势进化,牛B个体的基因被保留,后代越来越多,适应能力低个体的基因被淘汰,后代越来越少。经过几代的繁衍进化,留下来的少数个体,就是相对能力最强 ...
上一次我们使用遗传算法求解了一个较为复杂的多元非线性函数的极值问题,也基本了解了遗传算法的实现基本步骤。这一次,我再以经典的TSP问题为例,更加深入地说明遗传算法中选择、交叉、变异等核心步骤的实现。而且这一次解决的是离散型问题,上一次解决的是连续型问题,刚好形成 ...