前言:写本篇是为了记录一下之前阅读过的一些关于联邦学习的文章(主要是两篇联邦学习综述),然后对其中的一些关键点进行了总结,并加入了个人对于联邦学习这一研究领域的理解以及思考(侵删)。 可供参考链接: ...
前言:写本篇是为了记录一下之前阅读过的一些关于联邦学习的文章(主要是两篇联邦学习综述),然后对其中的一些关键点进行了总结,并加入了个人对于联邦学习这一研究领域的理解以及思考(侵删)。 可供参考链接: ...
部分文字引用自该文:崔建京, 龙军, 闵尔学, et al. 同态加密在加密机器学习中的应用研究综述[J]. 计算机科学, 2018(4):46-52. 同态加密 Rivest等人[1]于19 ...
前言:写本篇是为了记录一下之前阅读过的一些关于联邦学习的文章(主要是两篇联邦学习综述),然后对其中的一些关键点进行了总结,并加入了个人对于联邦学习这一研究领域的理解以及思考(侵删)。 可供参考链接: ...
联邦学习简介 联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是 ...
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. 2019. Federat ...
论文[1]在联邦学习的情景下引入了多任务学习,其采用的手段是使每个client/task节点的训练数据分布不同,从而使各任务节点学习到不同的模型,且每个任务节点以及全局(global)的模型都由多个分 ...
1 导引 联邦学习做为一种特殊的分布式机器学习,仍然面临着分布式机器学习中存在的问题,那就是设计分布式的优化算法。 以分布式机器学习中常采用的client-server架构(同步)为例,我们常常会 ...
1 分布式机器学习、联邦学习、多智能体介绍 最近这三个方面的论文都读过,这里写一篇博客归纳一下,以方便搞这几个领域的其他童鞋入门。我们先来介绍以下这三种机器学习范式的基本概念。 1.1 分布式机器 ...
1 导引 我们在《Python中的随机采样和概率分布(二)》介绍了如何用Python现有的库对一个概率分布进行采样,其中的Dirichlet分布大家一定不会感到陌生,这篇博客我们来更详细地介绍Dir ...
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:1908.07873v1 [cs.LG] 21 Aug 2019 Abstract 联邦学习包括通过远程设备或孤 ...