嗯,今天接着来搞五子棋,从五子棋开始给小伙伴们聊AI。 昨天晚上我们已经实现了一个五子棋的逻辑部分,其实讲道理,有个规则在,可以开始搞AI了,但是考虑到不够直观,我们还是顺带先把五子棋的UI也 ...
嗯,今天接着来搞五子棋,从五子棋开始给小伙伴们聊AI。 昨天晚上我们已经实现了一个五子棋的逻辑部分,其实讲道理,有个规则在,可以开始搞AI了,但是考虑到不够直观,我们还是顺带先把五子棋的UI也 ...
好久没有写过博客了,多久,大概8年???最近重新把写作这事儿捡起来……最近在折腾AI,写个AI相关的给团队的小伙伴们看吧。 搞了这么多年的机器学习,从分类到聚类,从朴素贝叶斯到SVM,从神经网 ...
前言 实例参考MorvanZhou/Reinforcement-learning-with-tensorflow, 更改为PyTorch实现,并增加了几处优化。实现效果如下。 其中,红色方块作为探 ...
上篇文章强化学习——状态价值函数逼近介绍了价值函数逼近(Value Function Approximation,VFA)的理论,本篇文章介绍大名鼎鼎的DQN算法。DQN算法是 DeepMind 团队 ...
在上一篇文章强化学习——DQN介绍 中我们详细介绍了DQN 的来源,以及对于强化学习难以收敛的问题DQN算法提出的两个处理方法:经验回放和固定目标值。这篇文章我们就用代码来实现 DQN 算法 一、环 ...
1. 前言 在前面的章节中我们介绍了时序差分算法(TD)和Q-Learning,当状态和动作空间是离散且维数不高时可使用Q-Table储存每个状态动作对的Q值,而当状态和动作空间是高维连续时,使用Q ...
花了一天时间大致了解了强化学习一些经典算法,总结成如下笔记。笔记中出现不少流程图,不是我自己画的都标了出处。 铺垫 1. Bellman方程 在介绍强化学习算法之前先介绍一个比较重要的 ...
上篇文章强化学习——详解 DQN 算法我们介绍了 DQN 算法,但是 DQN 还存在一些问题,本篇文章介绍针对 DQN 的问题的改进算法 一、Double DQN 算法 1、算法介绍 DQN的问 ...
Dueling Network Architectures for Deep Reinforcement Learning 论文地址 DuelingDQN 笔记 基本思路就是\(Q(s,a ...
Deep Recurrent Q-Learning for Partially Observable MDPs 论文地址 DRQN 笔记 DQN 每一个decision time 需要该时刻前 ...