1.深度学习中的正则化 提高泛化能力,防止过拟合 大多数正则化策略都会对估计进行正则化,估计的正则化以偏差的增加换取方差的减少 正则化方法是在训练数据不够多时,或者over training时,常常会导致过拟合(overfitting)。这时向原始模型引入额外信息,以便防止 ...
正则化的基本概念之前博客已有记录, 这里仅对正则化的实现做一点介绍 权重衰减 weight decay 模型的复杂性 如何衡量函数与 的距离 Lp范数 L L 正则化线性模型构成经典的岭回归 ridge regression 算法,L L 正则化线性回归通常被称为套索回归 lasso regression 。实践中多使用L 范数。 L L 使用L L 范数的一个原因是它对权重向量的大分量施加了巨大 ...
2022-01-25 22:14 0 765 推荐指数:
1.深度学习中的正则化 提高泛化能力,防止过拟合 大多数正则化策略都会对估计进行正则化,估计的正则化以偏差的增加换取方差的减少 正则化方法是在训练数据不够多时,或者over training时,常常会导致过拟合(overfitting)。这时向原始模型引入额外信息,以便防止 ...
提前终止 在对模型进行训练时,我们可以将我们的数据集分为三个部分,训练集、验证集、测试集。我们在训练的过程中,可以每隔一定量的step,使用验证集对训练的模型进行预测,一般来说,模型在训练集和验 ...
正则化方法有如下几种: 一、参数范数惩罚 其中L2、L1参数正则化介绍与关系如下 1、L2 参数正则化 直观解释如下: 2、L1 参数正则化 二、获取更多数据(扩样本) 避免过拟合的基本方法之一是从数据源获得更多数据,当训练数据 ...
神经网络的拟合能力非常强,通过不断迭代,在训练数据上的误差率往往可以降到非常低,从而导致过拟合(从偏差-方差的角度来看,就是高方差)。因此必须运用正则化方法来提高模型的泛化能力,避免过拟合。 在传统机器学习算法中,主要通过限制模型的复杂度来提高泛化能力,比如在损失函数中加入L1范数或者L2范数 ...
笔记摘抄 1. 训练集&验证集&测试集 训练集:训练数据 验证集:验证不同算法(比如,利用网格搜索对超参数进行调整等),检验哪种更有效 测试集:正确评估分类 ...
深度学习 (DeepLearning) 基础 [4]---欠拟合、过拟合与正则化 Introduce 在上一篇“深度学习 (DeepLearning) 基础 [3]---梯度下降法”中我们介绍了梯度下降的主要思想以及优化算法。本文将继续学习深度学习的基础知识,主要涉及: 欠拟合 ...
一、visdom可视化工具 安装:pip install visdom 启动:命令行直接运行visdom 打开WEB:在浏览器使用http://localhost:8097打开visdom界面 二、使用visdom 三、使用正则化 正则化也叫权重衰减 ...
在机器学习中,我们非常关心模型的预测能力,即模型在新数据上的表现,而不希望过拟合现象的的发生,我们通常使用正则化(regularization)技术来防止过拟合情况。正则化是机器学习中通过显式的控制模型复杂度来避免模型过拟合、确保泛化能力的一种有效方式。如果将模型原始的假设空间比作“天空 ...