1.图片分类的问题定义 图片分类定义:给定图片做输入,输出图片中所包含的物体类别; 图1 图像分类分为两种:single label (单分类)和multi label(多分类); 左上图片:single label and single instance(个体或实例 ...
机器学习最主要就是特征提取和特征分类。提取的特征的好坏,直接影响这分类的结果判断,所以在整个系统中占有很重要的位置。所提取的特征要在能表征物体特征的基础上,尽量做到维数少,易于计算和存储。常用的图像特征有颜色特征 纹理特征 形状特征 空间关系特征等。 颜色特征 特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像 ...
2021-12-07 16:48 0 981 推荐指数:
1.图片分类的问题定义 图片分类定义:给定图片做输入,输出图片中所包含的物体类别; 图1 图像分类分为两种:single label (单分类)和multi label(多分类); 左上图片:single label and single instance(个体或实例 ...
1、 HOG特征 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通过计算和统计图像局部区域的梯度方向直方图来构成特征。Hog特征结合SVM分类器已经被广泛应用 ...
1. 矩的概念 图像识别的一个核心问题是图像的特征提取,简单描述即为用一组简单的数据(图像描述量)来描述整个图像,这组数据越简单越有代表性越好。良好的特征不受光线、噪点、几何形变的干扰。图像识别发展几十年,不断有新的特征提出,而图像不变矩就是其中一个。 矩是概率与统计中的一个概念,是随机变量 ...
对于即将到来的人工智能时代,作为一个有理想有追求的程序员,不懂深度学习(Deep Learning)这个超热的领域,会不会感觉马上就out了?作为机器学习的一个分支,深度学习同样需要计算机获得强大的学习能力,那么问题来了,我们究竟要计算机学习什么东西?答案当然是图像特征了。将一张图像看做是一个个 ...
1.介绍 在大部分传统机器学习场景里,我们先经过特征工程等方法得到特征表示,然后选用一个机器学习算法进行训练。在训练过程中,表示事物的特征是固定的。 后来嘛,后来深度学习就崛起了。深度学习对外推荐自己的一个很重要的点是——深度学习能够自动提取特征。如果你是从 DNN 开始了解深度学习,你会对 ...
特征提取是计算机视觉和图像处理中的一个概念。它指的是使用计算机提取图像信息,决定每个图像的点是否属于一个图像特征。特征提取的结果是把图像上的点分为不同的子集,这些子集往往属于孤立的点、连续的曲线或者连续的区域。 特征的定义 至今为止特征没有万能和精确的定义。特征的精确定义往往由问题或者应用类型 ...
这里使用的是python 3.5 、opencv_python-3.4.0+contrib,特征提取的代码如下: 结提取果: ...
图像局部特征点检测算法综述 特征提取是计算机视觉和图像处理中的一个概念。它指的是使用计算机提取图像信息,决定每个图像的点是否属于一个图像特征。特征提取的结果是把图像上的点分为不同的子集,这些子集往往属于孤立的点、连续的曲线或者连续的区域。 特征的定义 ...