原文:【数学001】权方和不等式

数学 权方和不等式 权方和不等式简单应用 后面知识前移 x m y n x y m n 当且仅当x m y n 时等号成立 在数学必修一 基本不等式 专题,解题小妙招 e.g. a b ,a gt ,b gt ,求 a b 的最小值 正常做法显然是 a b 然后 a b a b ...最后能化成基本不等式的形式求最值 很麻烦 所以用权方和不等式呢 原式 妙哉 希望有所帮助 ...

2021-10-04 21:29 0 754 推荐指数:

查看详情

[数学趣味003]不等式

1.光的智慧: 光在同一种介质沿直线的传播。 让我们一起来回忆一下中学都做过的一道几何题: 小明(小明又中枪……)从A点去河CD打水至B点,求最短路线? 虽然简单,但是这个应用使用的也是最 ...

Tue Jun 17 17:32:00 CST 2014 6 1204
[数学]对数均值不等式

I think, therefore I am. ——Descartes 对数均值不等式 \[\sqrt{x_1x_2}\leq\frac{x_1-x_2}{\ln{x_1}-\ln{x_2}}\leq\frac{x_1+x_2}{2}\ ({x_1},{x_2 ...

Tue Feb 11 04:13:00 CST 2020 0 1606
不等式笔记

均值不等式 条件:\(a_i\ge0\)。 平方平均数:\(Q_n=\sqrt{\dfrac{\sum_{i=1}^{n}a_i^2}{n}}\) 算数平均数:\(A_n=\dfrac{\sum_{i=1}^{n}a_i}{n}\) 几何平均数:\(G_n=\sqrt[n]{a_1a_2 ...

Wed Oct 20 19:49:00 CST 2021 0 144
Jensen不等式

(1)定义 设f是定义域为实数的函数,如果对所有的实数x,f(x)的二阶导数都大于0,那么f是凸函数。 Jensen不等式定义如下: 如果f是凸函数,X是随机变量,那么: 。当且仅当X是常量时,该式取等号。其中,E(X)表示X的数学期望。 注:Jensen不等式应用于凹函数时,不等号方向 ...

Tue Mar 01 19:44:00 CST 2022 0 1436
基本不等式

不等式 $1$: $$a^{2} + b^{2} \geq 2ab$$ 从代数角度来证明: $$(a - b)^{2} \geq 0 \\\Rightarrow a^{2} -2ab + b^{2} \geq 0 \\\Rightarrow a^{2} + b^{2} \geq 2ab ...

Thu Nov 12 00:15:00 CST 2020 0 6858
Jensen 不等式

若f(x)为区间I上的下凸(上凸)函数,则对于任意xi∈I和满足∑λi=1的λi>0(i=1,2,...,n),成立: \[f(\sum ^{n} _{i=1} \lambda _{i}x_{ ...

Thu Mar 07 06:09:00 CST 2019 0 782
Jensen不等式

转载自:碎片化学习之数学(一):Jensen不等式 定义:对于一个凸函数\(f\),都有函数值的期望大于等于期望的函数值:$$E[f(x)]\geq f(E[x])$$上式当中\(x\)是一个随机变量,它可以是离散的或者连续的,假设\(x~p(x)\) 。 回顾一下凸函数的定义:对于任意的值 ...

Sun Aug 11 01:11:00 CST 2019 0 456
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM