狄利克雷卷积 定义:如果函数 \(F,f,g\) 满足: \(F(n)=\sum\limits_{d|n}f(d)g(\frac{n}{d})\) 则 \(F\) 是 \(f\) 和 \(g\) 的狄利克雷卷积,记作 \(F=(f∗g)\),或 \(F(n)=(f∗g)(n ...
听起来很 nb,很有名但比较难学的一个算法类型。然而确实很 nb。 我竟然在学 ymx 一年半前就学过的东西。 . 反演的本质与第一反演公式 . . 什么是反演 反演是通过用 f 表示 g 的方法求出如何用 g 表示 f 。 如果我们已知 g n 以及它如何用 f 表示: g n sum i nc n,i f i ,从而反推出用 g 表示 f 的方法: f n sum i nd n,i g i , ...
2021-08-15 17:39 0 130 推荐指数:
狄利克雷卷积 定义:如果函数 \(F,f,g\) 满足: \(F(n)=\sum\limits_{d|n}f(d)g(\frac{n}{d})\) 则 \(F\) 是 \(f\) 和 \(g\) 的狄利克雷卷积,记作 \(F=(f∗g)\),或 \(F(n)=(f∗g)(n ...
狄利克雷卷积&莫比乌斯反演总结 Prepare 1、\([P]\)表示当\(P\)为真时\([P]\)为\(1\),否则为\(0\)。 2、\(a|b\)指\(b\)被\(a\)整除。 3、一些奇怪常见的函数: \(1(n)=1\) \(id(n)=n\) \(\sigma ...
狄利克雷卷积简介 卷积这名字听起来挺学究的,今天学了之后发现其实挺朴实hhh。 卷积: “(n)”表示到n的一个范围。 设\(f,g\)是两个数论函数(也就是说,以自然数集为定义域的复数值函数),则卷积运算\(f\ast g\)定义为 \[(f\ast g)(n) = \sum_ ...
数论函数 陪域:包含值域的任意集合 数论函数:定义域为正整数,陪域为复数的函数 积性函数:对于函数$f(n)$,若存在任意互质的数$a,b$,使得$a*b=n$,并且$f(n)=f(a)*f(b ...
Definition 完全积性函数 单位函数 \[\varepsilon(n)=[n=1] \] 幂函数 \[Id_k(n)=n^k \] 特别地,有: \(k=0 ...
先放上板题 BZOJ3944 洛谷P4213 嗯,杜教筛解决的就是这样一个丧心病狂的前缀和 \(O(N)\)都会T。。 积性函数## 如果一个数论函数\(f(n)\),满足若\(m,n\)互 ...
定义出莫比乌斯函数的人似乎对容斥原理有了高深的造诣。这里从狄利克雷卷积(\(Dirichlet\)卷积 ...
目录 1. 前言 2. 一些基础函数 3. 积性函数 4. 狄利克雷卷积 5. 总结 6. 参考资料 1. 前言 狄利克雷卷积,是学习与继续探究 \(\mu\) 函数和 \(\varphi\) 函数的重要前提,因为这两个函数中有一些更好 ...