CVPR21 将图像超分辨率问题转化为寻找图像的连续表示。本质上图像会存在分辨率的问题,是由于其存储和表示使用的是二维数组。如果将图像的表示是一个连续函数,那么图像就可以是任意分辨率的。这个思路受启 ...
DAGs with NO TEARS: Continuous Optimization for Structure Learning 目录 DAGs with NO TEARS: Continuous Optimization for Structure Learning 概 主要内容 等价条件的推导 mathrm tr I W d mathrm tr e W d mathrm tr W k ma ...
2021-05-27 20:32 2 1614 推荐指数:
CVPR21 将图像超分辨率问题转化为寻找图像的连续表示。本质上图像会存在分辨率的问题,是由于其存储和表示使用的是二维数组。如果将图像的表示是一个连续函数,那么图像就可以是任意分辨率的。这个思路受启 ...
1,Introduction 当你想训练好一个神经网络时,你需要做好三件事情:一个合适的网络结构,一个合适的训练算法,一个合适的训练技巧: 合适的网络结构:包括网络结构和激活函数,你可以选 ...
论文信息:Ravi S, Larochelle H. Optimization as a model for few-shot learning[J]. 2016. 博文作者:Veagau 编辑时间:2020年01月07日 本文是2017年ICLR的会议 ...
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:1610.02527v1 [cs.LG] 8 Oct 2016 坐标下降法:https://blog.c ...
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! Plos Computational Biology, 2013 Abstract 动物会重复奖励的行为,但基于奖 ...
Continuous Deep Q-Learning with Model-based Acceleration 本文提出了连续动作空间的深度强化学习算法。 开始正文之前,首先要弄清楚两个概念:Model-free 和 Model-based。引用 周志华老师 ...
近年来,许多有效的在线学习算法的设计受到凸优化工具的影响。 此外,据观察,大多数先前提出的有效算法可以基于以下优雅模型联合分析: 凸集的定义: 一个向量 的Regret ...
一些在线预测问题可以转化到在线凸优化框架中。下面介绍两种凸化技术: 一些在线预测问题似乎不适合在线凸优化框架。例如,在线分类问题中,预测域(predictions domain)或损失函数不 ...