其实应该叫做指数加权平均梯度下降法。 ...
批梯度下降: 采用所有数据来梯度下降,在样本量很大的时,学习速度较慢,因为处理完全部数据,我们仅执行了一次参数的更新。 在学习过程中,我们会陷入损失函数的局部最小值,而永远无法达到神经网络获得最佳结果的全局最优值。这是因为我们计算的梯度大致相同。 所以,我们实际上需要的是一些嘈杂的渐变。方向值的这种小偏差将使梯度跳出损失函数的局部最小值,并朝着全局最小值继续更新。 鞍点:损失函数存在梯度为 的区域 ...
2020-11-30 14:20 0 1258 推荐指数:
其实应该叫做指数加权平均梯度下降法。 ...
动量梯度下降法(Gradient descent with Momentum) 还有一种算法叫做 Momentum,或者叫做动量梯度下降法,运行速度几乎总是快于标准的梯度下降算法,简而言之,基本的想法就是计算梯度的指数加权平均数,并利用该梯度更新你的权重。 如果你要优化成本函数,函数形状 ...
1.1 动量梯度下降法(Gradient descent with Momentum) 优化成本函数J,还有一种算法叫做 Momentum,或者叫做动量梯度下降法,运行速度几乎总是快于标准的梯度下降算法,简而言之,基本的想法就是计算梯度的指数加权平均数,并利用该梯度更新你的权重。 使用动量梯度 ...
总结: 梯度下降算法中,学习率太大,函数无法收敛,甚至发散,如下图。学习率足够小,理论上是可以达到局部最优值的(非凸函数不能保证达到全局最优),但学习率太小却使得学习过程过于缓慢,合适的学习率应该是能在保证收敛的前提下,能尽快收敛。对于深度网络中,参数众多,参数值初始位置随机,同样大小 ...
1. 梯度 在微积分里面,对多元函数的参数求∂偏导数,把求得的各个参数的偏导数以向量的形式写出来,就是梯度。比如函数f(x,y), 分别对x,y求偏导数,求得的梯度向量就是(∂f/∂x, ∂f/∂y)T,简称grad f(x,y)或者▽f(x,y)。对于在点(x0,y0)的具体梯度向量 ...
(1)梯度下降法 在迭代问题中,每一次更新w的值,更新的增量为ηv,其中η表示的是步长,v表示的是方向 要寻找目标函数曲线的波谷,采用贪心法:想象一个小人站在半山腰,他朝哪个方向跨一步,可以使他距离谷底更近(位置更低),就朝这个方向前进。这个方向可以通过微分得到。选择足够小的一段曲线 ...
下降法,基于这样的观察:如果实值函数 在点 处可微且有定义,那么函数 在 点沿着梯度相反的方向 ...
本文将从一个下山的场景开始,先提出梯度下降算法的基本思想,进而从数学上解释梯度下降算法的原理,最后实现一个简单的梯度下降算法的实例! 梯度下降的场景假设 梯度下降法的基本思想可以类比是一个下山的过程。可以假设一个场景:一个人上山旅游,天黑了,需要下山(到达山谷 ...