来源 https://zhuanlan.zhihu.com/p/32190799 今天在看文档的时候,发现pytorch 的conv操作不是很明白,于是有了一下记录 首先提出两个问题: 1.输入图片是单通道情况下的filters是如何操作的? 即一通道卷积核卷积过程 2.输入图片 ...
.Conv d Parameters: in channels int 输入信号的通道 out channels int 卷积产生的通道 kernel size intortuple 卷积核的尺寸 stride intortuple,optional 卷积步长 padding intortuple,optional 输入的每一条边补充 的层数 dilation intortuple,option ...
2020-08-10 09:20 0 5593 推荐指数:
来源 https://zhuanlan.zhihu.com/p/32190799 今天在看文档的时候,发现pytorch 的conv操作不是很明白,于是有了一下记录 首先提出两个问题: 1.输入图片是单通道情况下的filters是如何操作的? 即一通道卷积核卷积过程 2.输入图片 ...
参考链接: https://blog.csdn.net/sunny_xsc1994/article/details/82969867 https://www.cnblogs.com/lovephysics/p/7220111.html 这里只做理解,不放官方文档。 1.nn.Conv1d ...
官方参数说明: group这个参数是用做分组卷积的,但是现在用的比较多的是groups = in_channel,可以参考上面英文文档的最后一句。当groups = in_channel时,是在做的depth-wise conv的,具体思想可以参考 ...
由于计算机视觉的大红大紫,二维卷积的用处范围最广。因此本文首先介绍二维卷积,之后再介绍一维卷积与三维卷积的具体流程,并描述其各自的具体应用。 1. 二维卷积 图中的输入的数据维度为14×14">14×1414×14,过滤器大小为5
 ...
转自:https://blog.csdn.net/sunny_xsc1994/article/details/82969867,感谢分享 pytorch之nn.Conv1d详解 ...
方法定义 tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=True, data_format="NHWC", dilations=[1,1,1,1], name=None) 参数: input: 输入的要做 ...
class torch.nn.Conv1d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True) in_channels(int) :输入信号的通道。在文本 ...