1、多元函数的概念 1.1 连续 1.2 偏导数 1.3 全微分 1.4 可微的充分条件 如果f(x,y)的两个偏导数f’x(x,y),f’y(x,y)在点(x0,y0)连续,则必在点(x0,y0)处可微。 1.5 关系图 2、多元函数的极值和条件极值 2.1 ...
四 导数与微分 导数的定义 微分的定义 若 y A x x ,则dy A x 可导和可微与连续三者之间的关系 f x 在x 可导 f x 在x 可微 f x 在x 连续 导数的基础计算 . 基本初等函数的导数公式 . 函数的和 差 积 商的求导法则 设u u x ,v v x 都可导,则 高阶导数公式 ...
2020-06-09 18:03 0 770 推荐指数:
1、多元函数的概念 1.1 连续 1.2 偏导数 1.3 全微分 1.4 可微的充分条件 如果f(x,y)的两个偏导数f’x(x,y),f’y(x,y)在点(x0,y0)连续,则必在点(x0,y0)处可微。 1.5 关系图 2、多元函数的极值和条件极值 2.1 ...
很早总结的微分方程的基础总结,起手很好回忆,今天详细归纳一下解的结构知识。 1、高阶线性微分方程基本概念 2、高阶线性微分方程解的结构与性质 ...
九、定积分(不含应用) 1、定积分的定义 2、定积分的性质 3、重要必记定理 4、广义积分的概念及计算 4.1 无穷界限的广义积分 4.2 无界函数的广义积分 5、Γ ...
五、中值定理 1、罗尔(Rolle)定理 若y=f(x)满足以下条件 ① 在[a,b]上连续 ② 在(a,b)内可导 ③ f(b)=f(a) 则在(a,b)内至少存在一点ξ,使得 \[ ...
一、函数 1、函数 1.1 函数的定义 设x和y是两个变量(均在实数集R内取值),D是一个给定的非空数集,如果对于每个数x∈D,按照某个对应法则f,变量y都有唯一确定的数值和它对应,则称变量y是变量x的函数,记作y=f(x)。其中D称为函数y=f(x)的定义域,x称为自变量,y称为因变量 ...
二、极限 1、极限的定义 ① 数列极限的定义 对于数列{Xn},常数a,若对∀ε>0,∃正整数N,当n>N时,有|xn-a|<ε,则称a为{xn}的极限,或者称{xn收敛 ...
一、常见等价无穷小 当 \(x\rightarrow0\) 时, \(\sin x \sim x\) \(\tan x\sim x\) \(\arcsin x \sim x\) \(\arc ...
Part II 导数与微分 回到总目录 Part II 导数与微分 一元函数微分的定义 一元函数定义注意点 基本求导公式 基本求导方法 复合函数求导 隐函数求导 对数求导法 反函数求导 参数方程求导 ...