用牛顿迭代法求下面方程在1.5附近的根: 2\(x^3\)- 4\(x^2\) + 3\(x\) - 6= 0 答案解析: 牛顿迭代法的公式为: \(x_{n+1}\) = \(x_{n}\) - \(\frac{f(x_{n})}{f'(x_{n})}\) 其中,\(x_{n ...
include lt stdio.h gt include lt math.h gt int main double x ,x ,fx,fx x . while fabs x x gt e x x fx x x x fx x x x x fx fx printf . f n ,x return ...
2020-05-13 10:37 0 715 推荐指数:
用牛顿迭代法求下面方程在1.5附近的根: 2\(x^3\)- 4\(x^2\) + 3\(x\) - 6= 0 答案解析: 牛顿迭代法的公式为: \(x_{n+1}\) = \(x_{n}\) - \(\frac{f(x_{n})}{f'(x_{n})}\) 其中,\(x_{n ...
用牛顿迭代法求下面方程在1.5附近的根: 答案解析: 牛顿迭代法的公式为: $x_{n+1}$ = $x_{n}$ - $\frac{f(x_{n})}{f'(x_{n})}$ 其中,$x_{n}$为输出的值,在该题目当中为1.5。$f(x_{n})$为公式2$x^3$- 4$x ...
用牛顿迭代法求下面方程在1.5附近的根: 答案解析: 牛顿迭代法的公式为: \(x_{n+1}\) = \(x_{n}\) - \(\frac{f(x_{n})}{f'(x_{n})}\) 其中,\(x_{n}\)为输出的值,在该题目当中为1.5。\(f(x_{n})\)为公式2\(x ...
用牛顿迭代法求根。方程为\(ax^3+bx^2 +cx+d=0\),系数a,b,c,d的值依次为1,2,3,4,由主函数输人。求x在1附近的一个实根。求出根后由主函数输出。 点我看视频讲解+可运行代码,记得收藏视频,一键三连 题目解析: 此题的难点并不是编程,主要是要理解数学公式的求解方法 ...
牛顿迭代法 牛顿迭代法(Newton's method)又称为牛顿-拉夫逊方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公式,因此求精确根非常困难,甚至不 ...
第二篇随笔 9102年11月底,工科男曹**要算一个方程f(x)=0的根,其中f(x)表达式为: 因为实数范围内f(x)=0的根太多,所以本文只研究-2<x<2的情况.这个式子长的太丑了,曹**看着觉得不爽,导之,得一f'(x) 这个式子更丑,但是,我们有牛顿迭代法 ...
比二分更快的方法 如果要求一个高次方程的根,我们可以用二分法来做,这是最基础的方法了。但是有没有更好更快的方法呢? 我们先来考察一个方程f(x)的在点a的泰勒展开,展开到一阶就可以了(假设f(x)在点a可以泰勒展开,也就是泰勒展开的那个余项在n趋于无穷时趋于 ...