本文学习利用python学习边缘检测的滤波器,首先读入的图片代码如下: import cv2 from pylab import * img = cv2.imread("construc ...
.Sobel算子 卷积的作用除了实现图像模糊或者去噪,还可以寻找一张图像上所有梯度信息,这些梯度信息是图像的最原始特征数据,进一步处理之后就可以生成一些比较高级的特征用来表示一张图像实现基于图像特征的匹配,图像分类等应用。 Sobel算子是一种很经典的图像梯度提取算子,其本质是基于图像空间域卷积,背后的思想是图像一阶导数算子的理论支持。 sobel算子主要用于获得数字图像的一阶梯度,常见的应用和 ...
2020-01-09 14:50 0 4457 推荐指数:
本文学习利用python学习边缘检测的滤波器,首先读入的图片代码如下: import cv2 from pylab import * img = cv2.imread("construc ...
边缘检测是检测图像中的一些像素点,它们周围的像素点的灰度发生了急剧的变化,我们认为在这过程中,图像中的物体不同导致了这一变化,因此可以将这些像素点作为一个集合,可以用来标注图像中不同物体的边界。边缘区域的灰度剖面可以看作是一个阶跃,即图像的灰度在一个很小的区域内变化到另一个相差十分 ...
#1,个人理解 网上查了很多资料,都说sobel算子是用来检测边缘的,分别给了两个方向上的卷积核,然后说明做法,就说这就是sobel算子。对于我个人来说,还有很多不明白的地方,所以理清下思路。 #2,边缘、边界和sobel算子 这个可以自己去google或者百度找定义,边缘和边界不一样 ...
图像处理中,一个最基本并且最重要的卷积就是导数的计算,一般用来表达微分最常用的操作是Sobel算子,可以包含任意阶的微分以及融合偏导(例如∂2/∂x∂y)。在图像处理中,主要用作边缘检测。在技术上,它是一离散性差分算子,用来运算图像亮度函数的梯度之近似值。在图像的任何一点使用此算子,将会产生对应 ...
Sobel算子和梯度计算 一、目的与原理 (1)目的:Sobel算子主要用于边缘检测,对噪声平滑抑制。 (2)原理:图像梯度用于边缘检测。边缘是像素值发生跃迁的地方,是图像的显著特征之一。图像中有灰度值的变化就会有梯度,从而产生边缘,在边缘处,具有变化的强弱及方向。图像上可以使用一阶差分来 ...
Roberts算子 Roberts算子即为交叉微分算法,它是基于交叉差分的梯度算法,通过局部差分计算检测边缘线条。常用来处理具有陡峭的第噪声图像,当图像边缘接近于正45度或负45度时,该算法处理效果更理想,其缺点时对边缘的定位不太准确,提取的边缘线条较粗。 在Python中,Roberts算子 ...
实现思路: 1,将传进来的图片矩阵用算子进行卷积求和(卷积和取绝对值) 2,用新的矩阵(与原图一样大小)去接收每次的卷积和的值 3,卷积图片所有的像素点后,把新的矩阵数据类型转化为uint8 注意: 必须对求得的卷积和的值求绝对值;矩阵数据类型进行转化。 完整代码 ...
Sobel算子对噪声具有平滑作用,提供较为精确的边缘方向信息,边缘定位精度不够高。当对精度要求不是很高时,是一种较为常用的边缘检测方法。 ...