原文:EM算法-完整推导

前篇已经对EM过程,举了扔硬币和高斯分布等案例来直观认识了, 目标是参数估计, 分为 E step 和 M step, 不断循环, 直到收敛则求出了近似的估计参数, 不多说了, 本篇不说栗子, 直接来推导一波. Jensen 不等式 在满足: 一个 concave 函数, 即 形状为 bigcap 的函数 f x lambda j ge sum limits j lambda j 类似于随机变量的 ...

2019-12-18 00:45 0 922 推荐指数:

查看详情

梯度下降和EM算法,kmeans的em推导

I. 牛顿迭代法给定一个复杂的非线性函数f(x),希望求它的最小值,我们一般可以这样做,假定它足够光滑,那么它的最小值也就是它的极小值点,满足f′(x0)=0,然后可以转化为求方程f′(x)=0的根了 ...

Thu Aug 03 01:08:00 CST 2017 1 2064
EM算法的基本原理和推导

参考: 从最大似然到EM算法浅解 (EM算法)The EM Algorithm EM算法的九层境界:Hinton和Jordan理解的EM算法EM算法的证明中,其实比较好理解,总结如下: 从最大似然估计出发 ====> 将隐变量暴露出来,写出累加/积分的 形式 ...

Mon Aug 20 07:41:00 CST 2018 0 2361
BP算法完整推导 2.0 (上)

前面的笔记已经把 BP算法推导了, 那4大公式, 核心就是 求偏导数的链式法则, 这篇, 再来跟着大佬来推一波, 目的是为了加深印象. 关于记忆这个话题, 心理学家,其实早已经给出了答案, 最好的记忆方式, 就是重复, 写了这么多的笔记, 其实大多内容都是重复的, 交叉的, 反复了, 但不同是 ...

Sun Jan 26 06:42:00 CST 2020 0 1055
【机器学习】EM算法详细推导和讲解

  今天不太想学习,炒个冷饭,讲讲机器学习十大算法里有名的EM算法,文章里面有些个人理解,如有错漏,还请读者不吝赐教。   众所周知,极大似然估计是一种应用很广泛的参数估计方法。例如我手头有一些东北人的身高的数据,又知道身高的概率模型是高斯分布,那么利用极大化似然函数的方法可以估计出高斯分布 ...

Thu Jun 04 05:55:00 CST 2015 11 42254
【机器学习】EM算法详细推导和讲解

【机器学习】EM算法详细推导和讲解  今天不太想学习,炒个冷饭,讲讲机器学习十大算法里有名的EM算法,文章里面有些个人理解,如有错漏,还请读者不吝赐教。   众所周知,极大似然估计是一种应用很广泛的参数估计方法。例如我手头有一些东北人的身高的数据,又知道身高的概率模型是高斯分布,那么利用极大化 ...

Sun Aug 30 04:38:00 CST 2015 0 6588
EM(最大期望)算法推导、GMM的应用与代码实现

  EM算法是一种迭代算法,用于含有隐变量的概率模型参数的极大似然估计。 使用EM算法的原因   首先举李航老师《统计学习方法》中的例子来说明为什么要用EM算法估计含有隐变量的概率模型参数。   假设有三枚硬币,分别记作A, B, C。这些硬币正面出现的概率分别是$\pi,p,q$。进行 ...

Mon Jun 22 05:05:00 CST 2020 0 1626
EM算法求解三枚硬币模型的详细推导

问题原型 假设有三枚硬币,记为A,B,C,这三枚硬币出现正面的概率分别是\(\pi\),\(p\)和\(q\)。在掷硬币实验过程中,先掷硬币A,如果其结果为正面,则选择硬币B,反面则选择C;然后掷选 ...

Sun Jan 12 02:07:00 CST 2020 0 836
BP算法完整推导 2.0 (下)

上篇主要阐述 BP算法的过程, 以及 推导的 4 大公式的结论, 现在呢要来逐步推导出这写公式的原理. 当理解到这一步, 就算真正理解 BP算法了. 也是先做一个简单的回顾一下, 不是很细, 重点在推导, 不清楚就结合图像呀, 其实很直观的. 全篇其实就是在求偏导, 引入中间变量, 应用链式法则 ...

Mon Jan 27 03:58:00 CST 2020 0 195
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM