EM算法的基本原理和推导


参考: 

从最大似然到EM算法浅解

(EM算法)The EM Algorithm

EM算法的九层境界:Hinton和Jordan理解的EM算法

 

在EM算法的证明中,其实比较好理解,总结如下:

从最大似然估计出发 ====>  将隐变量暴露出来,写出累加/积分的 形式 ===> 引入Q(z),表示隐变量z的概率密度函数

==> 对于log函数,利用 Jensen不等式的变形:  f(E(x)  >= E(f(x)),得到最大似然函数的下界 

===> 对于log函数的Jenson不等式而言,只有当 X的变量取常量时,则可以不等式才能取到等号;

则得到等式;

以上的过程如下:

具体的计算过程如下:

固定好了Q(z),再去调整参数 Θ ,使得下界最大,如下图所示:

收敛性的证明:见参考一或吴恩达的课程

--------------------

--------------------


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM