1. 梯度 在微积分里面,对多元函数的参数求∂偏导数,把求得的各个参数的偏导数以向量的形式写出来,就是梯度。比如函数f(x,y), 分别对x,y求偏导数,求得的梯度向量就是(∂f/∂x, ∂f/∂y)T,简称grad f(x,y)或者▽f(x,y)。对于在点(x0,y0)的具体梯度向量 ...
简介 梯度下降法是迭代法的一种,可以用于求解最小二乘问题 线性和非线性都可以 ,在求解机器学习算法的模型参数,梯度下降是最常采用的方法之一,在求解损失函数的最小值时,可以通过梯度下降法来一步步的迭代求解 不是一个机器学习算法 是一种基于搜索的最优化方法 最小化损失函数 最大化一个效用函数 梯度上升法 模型 J theta b 定义了一个损失函数以后,参数 theta 对应的损失函数 J 的值对应的 ...
2019-11-20 20:14 0 288 推荐指数:
1. 梯度 在微积分里面,对多元函数的参数求∂偏导数,把求得的各个参数的偏导数以向量的形式写出来,就是梯度。比如函数f(x,y), 分别对x,y求偏导数,求得的梯度向量就是(∂f/∂x, ∂f/∂y)T,简称grad f(x,y)或者▽f(x,y)。对于在点(x0,y0)的具体梯度向量 ...
(1)梯度下降法 在迭代问题中,每一次更新w的值,更新的增量为ηv,其中η表示的是步长,v表示的是方向 要寻找目标函数曲线的波谷,采用贪心法:想象一个小人站在半山腰,他朝哪个方向跨一步,可以使他距离谷底更近(位置更低),就朝这个方向前进。这个方向可以通过微分得到。选择足够小的一段曲线 ...
梯度下降法存在的问题 梯度下降法的基本思想是函数沿着其梯度方向增加最快,反之,沿着其梯度反方向减小最快。在前面的线性回归和逻辑回归中,都采用了梯度下降法来求解。梯度下降的迭代公式为: \(\begin{aligned} \theta_j=\theta_j-\alpha\frac ...
关于机器学习的方法,大多算法都用到了最优化求最优解问题。梯度下降法(gradient descent)是求解无约束最优化问题的一种最常用的方法。它是一种最简单,历史悠长的算法,但是它应用非常广。下面主要在浅易的理解: 一、梯度下降的初步认识 先理解下什么是梯度,用通俗的话来说就是在原变量 ...
1. 前言 今天我们聊一聊机器学习和深度学习里面都至关重要的一个环节,优化损失函数。我们知道一个模型只有损失函数收敛到了一定的值,才有可能会有好的结果,降低损失方式的工作就是优化方法需要做的事。下面会讨论一些常用的优化方法:梯度下降法家族、牛顿法、拟牛顿法、共轭梯度法、Momentum ...
在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法。这里就对梯度下降法做一个完整的总结。 1. 梯度 在微积分里面,对多元函数的参数求∂偏导数,把求得的各个参数的偏导数以向量的形式写出来 ...
题目描述:自定义一个可微并且存在最小值的一元函数,用梯度下降法求其最小值。并绘制出学习率从0.1到0.9(步长0.1)时,达到最小值时所迭代的次数的关系曲线,根据该曲线给出简单的分析。 代码: # -*- coding: utf-8 -*- """ Created on Tue Jun ...