文本分类任务中可以利用CNN来提取句子中类似 n-gram 的关键信息。 TextCNN的详细过程原理图见下: keras 代码: 说明如下: 输入层 如图所示,,假设句子有 n">n 个词,vector的维数为 k">k ,那么这个矩阵 ...
论文 Convolutional Neural Networks for Sentence Classification 通过CNN实现了文本分类。 论文地址: 模型图: 模型解释可以看论文,给出code and comment:https: github.com graykode nlp tutorial ...
2019-11-09 15:13 0 572 推荐指数:
文本分类任务中可以利用CNN来提取句子中类似 n-gram 的关键信息。 TextCNN的详细过程原理图见下: keras 代码: 说明如下: 输入层 如图所示,,假设句子有 n">n 个词,vector的维数为 k">k ,那么这个矩阵 ...
本文是对论文的解读和复现。 论文地址:https://arxiv.org/abs/1408.5882 参考代码:https://mp.weixin.qq.com/s?__biz=MzI3ODgwO ...
读了一篇文章,用到卷积神经网络的方法来进行文本分类,故写下一点自己的学习笔记: 本文在事先进行单词向量的学习的基础上,利用卷积神经网络(CNN)进行句子分类,然后通过微调学习任务特定的向量,提高性能。 在从无监督神经语言模型中获得单词向量(Tomas Mikolov等人做过 ...
from:http://deeplearning.lipingyang.org/tensorflow-examples-text/ TensorFlow examples (text-based) ...
是近些年在机器视觉领域很火的模型,最先由 Yan Lecun 提出。 如果想学细节可以看 Andrej Karpathy 的 cs231n 。 How does it work? 给一张 ...
《ImageNet Classification with Deep Convolutional Neural Networks》 剖析 CNN 领域的经典之作, 作者训练了一个面向数量为 1.2 百万的高分辨率的图像数据集ImageNet, 图像的种类为1000 种的深度卷积神经网络 ...
之前所讲的图像处理都是小 patchs ,比如28*28或者36*36之类,考虑如下情形,对于一副1000*1000的图像,即106,当隐层也有106节点时,那么W(1)的数量将达到1012级别,为了减少参数规模,加快训练速度,CNN应运而生。CNN就像辟邪剑谱一样,正常人练得很挫,一旦自宫后 ...
CNN用于文本分类本就是一个不完美的解决方案,因为CNN要求输入都是一定长度的,而对于文本分类问题,文本序列是不定长的,RNN可以完美解决序列不定长问题, 因为RNN不要求输入是一定长度的。那么对于CNN用于解决文本分类问题而言,可以判断文本的长度范围,例如如果大多数文本长度在100以下 ...