Connectionist Temporal Classification (CTC) CTC可以用于线上实时地语音识别,编码器用的是单向的RNN,解码是用MLP来预测文字分布。 编码器将语音输入\(x^i\)编码成\(h^i\),MLP再对它乘上一个权重,接上Softmax,得到词表V大小 ...
从 WaveNet 到 Tacotron,再到 RNN T 谷歌再获语音识别新进展:利用序列转导来实现多人语音识别和说话人分类 雷锋网 AI 科技评论按:从 WaveNet 到 Tacotron,再到 RNN T,谷歌一直站在语音人工智能技术的最前沿。近日,他们又将多人语音识别和说话人分类问题融合在了同一个网络模型中,在模型性能上取得了重大的突破。 对于自动理解人类音频的任务来说,识别 谁说了什么 ...
2019-08-28 13:18 0 527 推荐指数:
Connectionist Temporal Classification (CTC) CTC可以用于线上实时地语音识别,编码器用的是单向的RNN,解码是用MLP来预测文字分布。 编码器将语音输入\(x^i\)编码成\(h^i\),MLP再对它乘上一个权重,接上Softmax,得到词表V大小 ...
: 思想: CTC对于当前时刻的输出只与当前时刻输入有关p(k|t),而RNN-T引 ...
独立性;RNN-T引入预测网络来弥补CTC这种条件独立性假设带来的问题 ...
注:本文为一次课程展示所用幻灯片与报告存档。 目录 背景 方法综述 RNN-Transducer 发展背景 模型结构 算法实现 后记 背景 语音识别是一项可以使人与人、人与机器更加顺畅地交流的技术。近年 ...
近来在了解卷积神经网络(CNN),后来查到CNN是受语音信号处理中时延神经网络(TDNN)影响而发明的。本篇的大部分内容都来自关于TDNN原始文献【1】的理解和整理。该文写与1989年,在识别"B", "D", "G"三个浊音中得到98.5%的准确率,高于HMM的93.7%。是CNN的先驱 ...
调用科大讯飞语音听写,使用Python实现语音识别,将实时语音转换为文字。 参考这篇博客实现的录音,首先在官网下载了关于语音听写的SDK,然后在文件夹内新建了两个.py文件,分别是get_audio.py和iat_demo.py,并且新建了一个存放录音的文件夹 ...
1. 语音合成zhrtvc:https://github.com/KuangDD/zhrtvc 2.离线语音识别 vosk+kaldi:https://alphacephei.com/vosk/ tacotron:https://github.com/keithito/tacotron ...
首先我们要知道语音的产生过程 由肺产生向外的气流,完全放松时声带张开,就是平时的呼吸。如果声带一张一合(振动)形成周期性的脉冲气流。这个脉冲气流的周期称之为——基音周期(题主所言因音色不同导致的频率不同,事实上音色的大多是泛频上的差异,建立在基频之上,这个基频就是基音周期了,泛频可以忽略 ...