class torch.nn.Conv1d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True) in_channels(int) :输入信号的通道。在文本 ...
转自:https: blog.csdn.net sunny xsc article details ,感谢分享 pytorch之nn.Conv d详解 ...
2019-05-11 20:38 0 2339 推荐指数:
class torch.nn.Conv1d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True) in_channels(int) :输入信号的通道。在文本 ...
参考链接: https://blog.csdn.net/sunny_xsc1994/article/details/82969867 https://www.cnblogs.com/lovephysics/p/7220111.html 这里只做理解,不放官方文档。 1.nn.Conv1d ...
文章目录 一、官方文档介绍 二、torch.nn.Conv2d()函数详解 参数详解 参数dilation——扩张卷积(也叫空洞卷积) 参数groups——分组卷积 三、代码实例 一、官方文档介绍 ...
Pytorch中nn.Conv2d的用法 nn.Conv2d是二维卷积方法,相对应的还有一维卷积方法nn.Conv1d,常用于文本数据的处理,而nn.Conv2d一般用于二维图像。 先看一下接口定义: class torch.nn.Conv2d(in_channels ...
输入x: [ batch_size, channels, height_1, width_1 ] batch_size 一个batch中样例的个数 ...
nn.Conv2d nn.Conv2d是二维卷积方法,相对应的还有一维卷积方法nn.Conv1d,常用于文本数据的处理,而nn.Conv2d一般用于二维图像。 channel 在深度学习的算法学习中,都会提到 channels 这个概念。在一般的深度学习框架的 conv2d 中 ...
用法: Shape: 计算公式: 参数: bigotimes: 表示二维的相关系数计算 stride: 控制相关系数的计算步长 dilation: ...