原文:LQ-Nets: Learned Quantization for Highly Accurate and Compact Deep Neural Networks 论文阅读

摘要 虽然权重和激活量化是深度神经网络 DNN 压缩的有效方法,并且具有很多利用bit操作来提高推理速度的潜力,但在量化模型和完整模型之间的预测精度方面仍存在明显差距。为了解决这个差距,我们建议联合训练量化的,位操作兼容的DNN及其相关的量化器,而不是使用固定的手工量化方案,例如均匀或对数量化。我们学习量化器的方法适用于任意位精度的网络权重和激活,我们的量化器很容易训练。对CIFAR 和Imag ...

2019-03-27 12:19 0 559 推荐指数:

查看详情

论文阅读 | Trojaning Attack on Neural Networks

对神经网络的木马攻击 Q: 1. 模型蒸馏可以做防御吗? 2. 强化学习可以帮助生成木马触发器吗? 3. 怎么挑选建立强连接的units? 本文提出了一种针对神经元网络的木马攻击 ...

Wed Aug 14 01:44:00 CST 2019 0 776
《Learning Convolutional Neural Networks for Graphs》论文阅读

首先,容我吐槽一下这篇论文的行文结构、图文匹配程度、真把我搞得晕头转向,好些点全靠我猜测推理作者想干嘛,😈 背景 我们知道传统的CNN针对的是image,是欧氏空间square grid,那么使用同样square grid的卷积核就能对输入的图片进行特征的提取。在上一篇论文中,使用的理论 ...

Mon Apr 20 09:28:00 CST 2020 0 1532
《Diffusion-Convolutional Neural Networks论文阅读

DCNN 主要思想: 这是一篇基于空间域的图神经网络,聚合方式通过采样(hop)1~k 阶的邻居并同 self 使用 mean 的方式得到新的 feature-vector 作者将不同的 ...

Sat Jun 20 07:12:00 CST 2020 0 1023
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM