Moosavidezfooli S, Fawzi A, Frossard P, et al. DeepFool: A Simple and Accurate Method to Fool Deep Neural Networks[C]. computer vision and pattern recognition, 2016: 2574-2582.
@article{moosavidezfooli2016deepfool:,
title={DeepFool: A Simple and Accurate Method to Fool Deep Neural Networks},
author={Moosavidezfooli, Seyedmohsen and Fawzi, Alhussein and Frossard, Pascal},
pages={2574--2582},
year={2016}}
概
本文从几何角度介绍了一种简单而有效的方法.
主要内容
adversarial的目的:
\[\tag{1} \Delta(x;\hat{k}):= \min_{r} \|r\|_2 \: \mathrm{subject} \: \mathrm{to} \: \hat{k}(x+r) \not = \hat{k}(x), \]
其中\(\hat{k}(x)\)为对\(x\)的标签的一个估计.
二分类模型
当模型是一个二分类模型时,
\[\hat{k}(x) = \mathrm{sign}(f(x)), \]
其中\(f:\mathbb{R}^n \rightarrow \mathbb{R}\)为分类器, 并记\(\mathcal{F}:= \{x: f(x)=0\}\)为分类边界.
\(f\)为线性
即\(f(x)=w^Tx+b\):

假设\(x_0\)在\(f(x)>0\)一侧, 则
\[r_*(x_0)= -\frac{f(x_0)}{\|w\|_2^2}w. \]
\(f\)为一般二分类
此时, 我们\(f\)的一阶近似为
\[f(x_0+r)\approx f(x_0)+\nabla^T f(x_0) r, \]
此时分类边界为\(\mathcal{F} =\{x:f(x_0)+\nabla^T f(x_0) (x-x_0)=0\}\),此时\(w=\nabla f(x_0),b=f(x_0),\) 故
\[\tag{4} r_*(x_0) \approx -\frac{f(x_0)}{\|\nabla f(x_0)\|_2^2} \nabla f(x_0). \]
所以, 每次
\[r_i = -\frac{f(x_i)}{\|\nabla f(x_i)\|_2^2} \nabla f(x_i), \\ x_{i+1} = x_i+r_i, \]
直到\(\hat{k}(x_i) \not= \hat{k}(x_0)\)是停止, 算法如下

多分类问题
\(f:\mathbb{R}^n \rightarrow \mathbb{R}^c\), 此时
\[\tag{5} \hat{k}(x) = \arg \max_k f_k(x). \]
\(f\)仿射
即\(f(x) = W^Tx + b\), 设\(W\)的第\(k\)行为\(w_k\),
\[\tag{7} P=\cap_{k=1}^c \{x: f_{\hat{k}(x_0)}(x) \ge f_k(x)\}, \]
为判定为\(\hat{k}(x_0)\)的区域, 则\(x+r\)应落在\(P^{c}\), 而
\[\Delta (x_0;f)= \mathbf{dist} (x_0, P^c). \]
当\(f\)为仿射的时候, 实际上就是找\(x_0\)到各分类边界(与\(x_0\)有关的)最短距离,
\[\tag{8} \hat{l}(x_0) = \arg \min _{k \not = \hat{k}(x_0)} \frac{|f_k(x_0) - f_{\hat{k}(x_0)}(x_0)|}{\|w_k-w_{\hat{k}(x_0)}\|_2}, \]
则
\[\tag{9} r_*(x_0)= \frac{|f_{\hat{l}(x_0)}(x_0) - f_{\hat{k}(x_0)}(x_0)|}{\|w_{\hat{l}(x_0)}-w_{\hat{k}(x_0)}\|_2^2}(w_{\hat{l}(x_0)}-w_{\hat{k}(x_0)}), \]
\(f\)为一般多分类
\[\tag{10} \tilde{P}_i=\cap_{k=1}^c \{x: f_{\hat{k}(x_0)}(x_i) + \nabla^T f_{\hat{k}(x_0)}(x_i) (x-x_i)\ge f_k(x_i) + \nabla^Tf_k(x_i)(x-x_i)\}, \]
则
\[r_i(x_i)=\frac{|f_{\hat{l}(x_i)}(x_i) - f_{\hat{k}(x_0)}(x_i)|}{\|\nabla f_{\hat{l}(x_i)}(x_i) - \nabla f_{\hat{k}(x_0)}(x_i)\|_2^2}(\nabla f_{\hat{l}(x_i)}(x_i) - \nabla f_{\hat{k}(x_0)}(x_i)). \]

\(l_p\)
\(p \in (1, \infty)\)的时候
考虑如下的问题
\[\begin{array}{ll} \min & \|r\|_p^p \\ \mathrm{s.t.} & w^T(x+r)+b=0, \end{array} \]
利用拉格朗日乘子
\[\min_r \: \|r\|_p^p + c(w^T(x+r)+b), \]
由KKT条件可知(这里的\(r_k\)表示第\(k\)个元素)
\[p\: |r_k|^{p-1} = c_kw_k, \]
注: 这里有一个符号的问题, 但是可以把符号放入\(c_k\)中进而不考虑,
故
\[r_*= c \odot w^{q-1}, \]
其中\(q=\frac{p}{p-1}\)为共轭指数, 并\(c=[c_1,\ldots]^T\),且\(|c_i|=|c_j|,\) 记\(w^{q-1}=[|w_1|^{q-1},\ldots]^T\),又
\[w^T(x+c\odot w^{q-1})+b=0, \]
故
\[|c|=\frac{|w^Tx+b|}{\|w\|_q^q} , \]
故
\[r_*=-\frac{w^Tx+b}{\|w\|_q^q} w^{q-1} \odot \mathrm{sign}(w). \]
\(p=1\), 设\(w\)的绝对值最大的元素为\(w_{m}\), 则
\[r_*=-\frac{w^Tx+b}{w_m} \mathrm{1}_m, \]
\(\mathrm{1}_m\)为第\(m\)个元素为1, 其余元素均为0的向量.
\(p=\infty\),
\[r_*=-\frac{|w^Tx+b|}{\|w\|_1} \mathrm{sign} (w). \]
故:
\(p \in [1, \infty)\):

\(p=\infty\):

注: 因为, 仅仅到达边界并不足够, 往往希望更进一步, 所以在最后(?)\(x=x+ (1+\eta) r\), 文中取\(\eta=0.02\).