#基于IMDB数据集的简单文本分类任务 #一层embedding层+一层lstm层+一层全连接层 #基于Keras 2.1.1 Tensorflow 1.4.0 代码: 结果: ...
首先,对需要导入的库进行导入,读入数据后,用jieba来进行中文分词 encoding: utf 载入接下来分析用的库 import pandas as pd import numpy as np import xgboost as xgb from tqdm import tqdm from sklearn.svm import SVC from keras.models import Seq ...
2019-03-24 16:41 1 3096 推荐指数:
#基于IMDB数据集的简单文本分类任务 #一层embedding层+一层lstm层+一层全连接层 #基于Keras 2.1.1 Tensorflow 1.4.0 代码: 结果: ...
数据集是网上找的 流程: 加载数据集,去停用词 使用 Keras 的 Tokenizer 将每一文本用数字表示 创建 TextCNN 模型,训练并预测 在 1080Ti 上 batch_size = 128 时每一 epoch 用时 2 s,跑 ...
语料链接:https://pan.baidu.com/s/1aDIp3Hxw-Xuxcx-lQ_0w9A 提取码:hpg7 trains.txt pos/neg各500条,一共1000条(用于训练 ...
摘抄笔记 语料链接:https://pan.baidu.com/s/1aDIp3Hxw-Xuxcx-lQ_0w9A 提取码:hpg7 1. 数据预处理 加载数据、创建vocabulary、创 ...
github: https://github.com/haibincoder/NlpSummary/tree/master/torchcode/classification 使用TextCNN实现文本分类 使用LSTM实现文本分类 使用Transformers实现文本分类 ...
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类。总共有以下系列: word2vec预训练词向量 textCNN 模型 charCNN 模型 Bi-LSTM 模型 ...
一、背景 在进行深度学习的时候,需要进行模型的预处理和数据转换,这里记录一下内容和方法,方便以后的使用和查找。根据模型的过程,将会按照数据集的处理、标签转化、文本向量化、模型构建、添加评估内容等几个基础的方面进行介绍。 二、内容介绍 2.1 数据的读取 数据的读取一般是直接使用pandas ...
数据集介绍 包含来自互联网电影数据库的50000条影评文本,对半拆分为训练集和测试集。训练集和测试集之间达成了平衡,意味着它们包含相同数量的正面和负面影评,每个样本都是一个整数数组,表示影评中的字词。每个标签都是整数值 0 或 1,其中 0 表示负面影评,1 表示正面影评。 注意事项 ...