原文:相似矩阵的几何意义

...

2019-02-26 15:26 0 1615 推荐指数:

查看详情

Hessian矩阵几何意义

和特征向量 矩阵最大的应用之一就是在几何变换上,比如旋转,平移,反射,以及倍数变大或变小。 举例: ...

Mon Oct 14 17:59:00 CST 2019 0 1596
矩阵乘法的几何意义

转载自http://blog.sina.com.cn/s/blog_442001420102vdux.html 矩阵几何意义,它可以总结为3个容易理解的特性。 变换(Transformations) 你应该已经知道变换(transformation),它将任意3D点的坐标变换到另一个3D点 ...

Wed Apr 05 23:12:00 CST 2017 0 4269
矩阵乘法的几何意义

从投影的角度理解矩阵乘法: 向量x在以ai作为每个坐标轴单位向量的新坐标系的坐标 通俗讲:在矩阵中,以矩阵中的行矩阵作为一个具体的点和原点的连线作为坐标轴,所有的行也是这样从而组成一个坐标系,求原来向量在新的坐标系中的坐标点。 特点:根据矩阵中的行组成的坐标系 从坐标映射角度理解矩阵乘法 ...

Tue Dec 18 02:07:00 CST 2018 0 1318
矩阵与行列式的几何意义

作者:童哲链接:https://www.zhihu.com/question/36966326/answer/70687817来源:知乎著作权归作者所有,转载请联系作者获得授权。 行列式这个“怪物”定义初看很奇怪,一堆逆序数什么的让人不免觉得恐惧,但其实它是有实际得不能更实际的物理意义 ...

Mon Oct 03 05:00:00 CST 2016 0 23730
矩阵行列式的几何意义

矩阵行列式的几何意义 行列式的定义: 行列式是由一些数据排列成的方阵经过规定的计算方法而得到的一个数。当然,如果行列式中含有未知数,那么行列式就是一个多项式。它本质上代表一个数值,这点请与矩阵区别开来。矩阵只是一个数表,行列式还要对这个数表按照规则进一步计算,最终得到一个实数、复数 ...

Tue Apr 09 00:24:00 CST 2019 1 9921
矩阵行列式的几何意义

转载:矩阵行列式的几何意义 - Tsingke - 博客园 (cnblogs.com) 矩阵行列式的几何意义 行列式的定义: 行列式是由一些数据排列成的方阵经过规定的计算方法而得到的一个数。当然,如果行列式中含有未知数,那么行列式就是一个多项式。它本质上代表一个 ...

Mon Feb 28 22:00:00 CST 2022 0 659
理解相似矩阵

相似矩阵(similar matrices) 定义 设\(A,B\)都是\(n\)阶矩阵,若有可逆矩阵\(P\),使得\(P^{-1}AP=B\),则称\(B\)是\(A\)的相似矩阵。 两个相似矩阵的特征值相同,也就是说如果一个矩阵和一个对角矩阵\(\Lambda ...

Thu Aug 29 04:17:00 CST 2019 0 382
微分的几何意义

微分的几何意义 为了对微分有比较直观的了解,我们来说明微分的几何意义. 在直角坐标系中,函数\(y=f(x)\)的图形是一条曲线.对于某一固定的\(x_0\)值,曲线上有一个确定点\(M(x_0,y_0)\),当自变量 x 有微小增量\(\Delta x\)时,就得到曲线上另一点\(N ...

Fri Aug 13 16:28:00 CST 2021 0 1070
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM