简介 DQN——Deep Q-learning。在上一篇博客DQN(Deep Q-learning)入门教程(四)之Q-learning Play Flappy Bird 中,我们使用Q-Table来储存state与action之间的q值,那么这样有什么不足呢?我们可以将问题的稍微复杂化一点 ...
目录 马尔可夫理论 马尔可夫性质 马尔可夫过程 MP 马尔可夫奖励过程 MRP 值函数 value function MRP求解 马尔可夫决策过程 MDP 效用函数 优化的值函数 贝尔曼等式 参考 DQN发展历程 一 DQN发展历程 二 DQN发展历程 三 DQN发展历程 四 DQN发展历程 五 马尔可夫理论 马尔可夫性质 P St St P St S ,...,St 给定当前状态 St ,过去 ...
2019-02-26 11:24 0 596 推荐指数:
简介 DQN——Deep Q-learning。在上一篇博客DQN(Deep Q-learning)入门教程(四)之Q-learning Play Flappy Bird 中,我们使用Q-Table来储存state与action之间的q值,那么这样有什么不足呢?我们可以将问题的稍微复杂化一点 ...
在上一篇文章中介绍了MDP与Bellman方程,MDP可以对强化学习的问题进行建模,Bellman提供了计算价值函数的迭代公式。但在实际问题中,我们往往无法准确获知MDP过程中的转移概率$P$, ...
简介 DQN入门系列地址:https://www.cnblogs.com/xiaohuiduan/category/1770037.html 本来呢,在上一个系列数据挖掘入门系列博客中,我是准备写数据挖掘的教程,然后不知怎么滴,博客越写越偏,写到了神经网络,深度学习去了。在我写完数据挖掘博客 ...
上篇文章强化学习——状态价值函数逼近介绍了价值函数逼近(Value Function Approximation,VFA)的理论,本篇文章介绍大名鼎鼎的DQN算法。DQN算法是 DeepMind 团队在2015年提出的算法,对于强化学习训练苦难问题,其开创性的提出了两个解决办法,在atari游戏 ...
与数据挖掘系列的博客,内容还是比较少的,内容如下所示: DQN(Deep Q-learning ...
Deep Q Learning 使用gym的CartPole作为环境,使用QDN解决离散动作空间的问题。 一、导入需要的包和定义超参数 二、DQN构造函数 1、初始化经验重放buffer; 2、设置问题的状态空间维度,动作空间维度; 3、设置e-greedy ...
在强化学习(八)价值函数的近似表示与Deep Q-Learning中,我们讲到了Deep Q-Learning(NIPS 2013)的算法和代码,在这个算法基础上,有很多Deep Q-Learning(以下简称DQN)的改进版,今天我们来讨论DQN的第一个改进版Nature DQN ...
在DQN(Deep Q-learning)入门教程(四)之Q-learning Play Flappy Bird中,我们使用q-learning算法去对Flappy Bird进行强化学习,而在这篇博客中我们将使用神经网络模型来代替Q-table,关于DQN的介绍,可以参考我前一篇博客:DQN ...