原文:pytorch种, 一维Conv1d, 二维Conv2d

pytorch之nn.Conv d详解 之前学习pytorch用于文本分类的时候,用到了一维卷积,花了点时间了解其中的原理,看网上也没有详细解释的博客,所以就记录一下。 Conv dclass torch.nn.Conv d in channels, out channels, kernel size, stride , padding , dilation , groups , bias Tru ...

2019-02-23 10:23 0 9462 推荐指数:

查看详情

【转】python中的一卷积conv1d二维卷积conv2d

转自:https://blog.csdn.net/qq_26552071/article/details/81178932 二维卷积conv2d 给定4的输入张量和滤波器张量来进行2的卷积计算。即:图像进行2卷积计算 一卷积conv1d ...

Sun Apr 14 00:12:00 CST 2019 0 1835
Conv1DConv2D的区别

我的答案是,在Conv2D输入通道为1的情况下,二者是没有区别或者说是可以相互转化的。首先,二者调用的最后的代码都是后端代码(以TensorFlow为例,在tensorflow_backend.py里面可以找到): x = tf.nn.convolution( input=x, filter ...

Mon Jun 03 03:56:00 CST 2019 0 804
Conv1DConv2DConv3D

由于计算机视觉的大红大紫,二维卷积的用处范围最广。因此本文首先介绍二维卷积,之后再介绍一卷积与三卷积的具体流程,并描述其各自的具体应用。 1. 二维卷积 图中的输入的数据维度为14×14">14×1414×14,过滤器大小为5&#x00D ...

Fri Apr 26 05:16:00 CST 2019 0 14439
Pytorchconv2d

cross-correlation(互相关、交叉相关): Coutj 第j个输出Channel(或由第j个Filter输出) 对于每个Coutj (或每个Fi ...

Tue Jun 02 06:28:00 CST 2020 0 813
pytorchconv1d操作

参考:https://blog.csdn.net/liujh845633242/article/details/102668515 这里我重点说一下1D卷积,2D卷积很好理解,但是1D卷积就不是那么好理解了,以textcnn为例,在对句子长度进行卷积之后,再将词向量的维度SUM成1,总而言之 ...

Tue Dec 03 19:07:00 CST 2019 0 1017
Conv2D

Conv2D keras.layers.convolutional.Conv2D(filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1), activation ...

Sun Aug 11 03:56:00 CST 2019 0 1436
keras conv2D参数

keras.layers.Conv2D(filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1), activation=None, use_bias=True ...

Thu Oct 10 19:27:00 CST 2019 0 12073
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM