贝叶斯线性回归(Bayesian Linear Regression) 2016年06月21日 09:50:40 Duanxx 阅读数 54254更多 分类专栏: 监督学习 ...
本文顺序 一 回忆线性回归 线性回归用最小二乘法,转换为极大似然估计求解参数W,但这很容易导致过拟合,由此引入了带正则化的最小二乘法 可证明等价于最大后验概率 二 什么是贝叶斯回归 基于上面的讨论,这里就可以引出本文的核心内容:贝叶斯线性回归。 贝叶斯线性回归不仅可以解决极大似然估计中存在的过拟合的问题。 它对数据样本的利用率是 ,仅仅使用训练样本就可以有效而准确的确定模型的复杂度。 在极大似然估 ...
2019-02-15 10:55 0 577 推荐指数:
贝叶斯线性回归(Bayesian Linear Regression) 2016年06月21日 09:50:40 Duanxx 阅读数 54254更多 分类专栏: 监督学习 ...
一些问题: 1. 什么时候我的问题可以用GLM,什么时候我的问题不能用GLM? 2. GLM到底能给我们带来什么好处? 3. 如何评价GLM模型的好坏? 广义线性回归啊,虐了我快几个月了,还是没有彻底搞懂,看paper看代码的时候总是一脸懵逼。 大部分分布都能看作是指数族 ...
贝叶斯线性回归(Bayesian Linear Regression) 关于参数估计 在很多机器学习或数据挖掘问题中,我们所面对的只有数据,但数据中潜在的概率密度函数是不知道的,概率密度分布需要我们从数据中估计出来。想要确定数据对应的概率分布,就需要确定两个东西:概率密度函数的形式 ...
成本函数(cost function)也叫损失函数(loss function),用来定义模型与观测值的误差。模型预测的价格与训练集数据的差异称为残差(residuals)或训练误差(test e ...
1.Model 概率图模型表示 2.先验分布:参数的先验,通常认为参数θ服从高斯分布,w~N(0,α-1I) 3.似然函数:对数似然函数 logP(D|W) 4.后验分布, P(W|D)=N(μ ...
一、主要思想 在 L2-norm 的误差意义下寻找对所有观测目标值 Y 拟合得最好的函数 f(X) = WTX 。 其中 yi 是 scalar,xi 和 W 都是 P 维向量(比实际的 xi 多 ...
1. 前言 线性回归形式简单、易于建模,但却蕴涵着机器学习中一些重要的基本思想。许多功能更为强大的非线性模型(nonlinear model)可在线性模型的基础上通过引入层级结构或高维映射而得。此外,由于线性回归的解\(\theta\)直观表达了各属性在预测中的重要性,因此线性回归有很好的可解释 ...
2019年08月31日更新 看了一篇发在NM上的文章才又明白了贝叶斯方法的重要性和普适性,结合目前最火的DL,会有意想不到的结果。 目前一些最直觉性的理解: 概率的核心就是可能性空间一定,三体世界不会有概率 贝叶斯的基础就是条件概率,条件概率的核心就是可能性空间的缩小,获取了新 ...