目录 基础概念 自定义一个网络为例 初始化模型参数 计算卷积核上的梯度 梯度更新 PyTorch实战 参考资料 在很多机器学习的资料中,对梯度反向传播在全连接神经网络的应用介绍的比较多;但是较少有介绍过卷积网络的梯度是如何反向传播的,这也是知乎公司 ...
Tensorflow 卷积的梯度反向传播 一.valid卷积的梯度 我们分两种不同的情况讨论valid卷积的梯度:第一种情况,在已知卷积核的情况下,对未知张量求导 即对张量中每一个变量求导 第二种情况,在已知张量的情况下,对未知卷积核求导 即对卷积核中每一个变量求导 .已知卷积核,对未知张量求导 我们用一个简单的例子理解valid卷积的梯度反向传播。假设有一个 x 的未知张量x,以及已知的 x ...
2019-01-31 13:28 0 833 推荐指数:
目录 基础概念 自定义一个网络为例 初始化模型参数 计算卷积核上的梯度 梯度更新 PyTorch实战 参考资料 在很多机器学习的资料中,对梯度反向传播在全连接神经网络的应用介绍的比较多;但是较少有介绍过卷积网络的梯度是如何反向传播的,这也是知乎公司 ...
Tensorflow–一维离散卷积 一维离散卷积的运算是一种主要基于向量的计算方式 一.一维离散卷积的计算原理 一维离散卷积通常有三种卷积类型:full卷积,same卷积和valid卷积 1.full卷积 full卷积的计算过程如下:K沿着I顺序移动,每移动一个固定 ...
Tensorflow–二维离散卷积 一.二维离散卷积的计算原理 二维离散卷积的计算原理同一维离散卷积的计算原理类似,也有三种卷积类型:full卷积,same卷积核valid卷积。通过3行3列的二维张量x和2行2列的二维张量K 1.full卷积 full卷积的计算过程如下:K ...
1.感知机 单层感知机: 多层感知机: 2.链式法则求梯度 $y1 = w1 * x +b1$ $y2 = w2 * y1 +b2$ $\frac{dy_{2}}{^{dw_{1}}}= \frac{dy_{2}}{^{dy_{1}}}*\frac{dy_ ...
一、梯度下降法 1.什么是梯度下降法 顺着梯度下滑,找到最陡的方向,迈一小步,然后再找当前位,置最陡的下山方向,再迈一小步… 通过比较以上两个图,可以会发现,由于初始值的不同,会得到两个不同的极小值,所以权重初始值的设定也是十分重要的,通常的把W全部设置为0很容易掉到局部最优 ...
在FNN(DNN)的前向传播,反向梯度推导以及代码验证中,我们不仅总结了FNN(DNN)这种神经网络结构的前向传播和反向梯度求导公式,还通过tensorflow的自动求微分工具验证了其准确性。在本篇章,我们将专门针对CNN这种网络结构进行前向传播介绍和反向梯度推导。更多相关内容请见《神经网络的梯度 ...
在《神经网络的梯度推导与代码验证》之CNN的前向传播和反向梯度推导 中,我们学习了CNN的前向传播和反向梯度求导,但知识仍停留在纸面。本篇章将基于深度学习框架tensorflow验证我们所得结论的准确性,以便将抽象的数学符号和实际数据结合起来,将知识固化。更多相关内容请见《神经网络的梯度推导 ...