Tensor是Pytorch的一个完美组件 可以生成高维数组 ,但是要构建神经网络还是远远不够的,我们需要能够计算图的Tensor,那就是Variable。Variable是对Tensor的一个封装,操作和Tensor是一样的,但是每个Variable都有三个属性,Varibale的Tensor本身的.data,对应Tensor的梯度.grad,以及这个Variable是通过什么方式得到的.gra ...
2018-12-28 14:05 0 10210 推荐指数:
torch.autograd.Variable是Autograd的核心类,它封装了Tensor,并整合了反向传播的相关实现(tensor变成variable之后才能进行反向传播求梯度?用变量.backward()进行反向传播之后,var.grad中保存了var的梯度) x = Variable ...
自动求导机制是pytorch中非常重要的性质,免去了手动计算导数,为构建模型节省了时间。下面介绍自动求导机制的基本用法。 #自动求导机制 import torch from torch.autograd import Variable # 1、简单的求导(求导对象是标量) x ...
首先在变量的操作上:Tensor对象支持在原对象内存区域上修改数据,通过“+=”或者torch.add()方法而Variable不支持在原对象内存区域上修改数据Variable对象可求梯度,并且对Variable对象的操作,操作会被记录,可通过grad_fn属性查看上一次的操作,可通过data属性 ...
1.简介 torch.autograd.Variable是Autograd的核心类,它封装了Tensor,并整合了反向传播的相关实现 Varibale包含三个属性: data:存储了Tensor,是本体的数据 grad:保存 ...
一、概念 1.Numpy里没有Variable这个概念,如果大家学过TensorFlow就会知道,Variable提供了自动求导的功能。 2.Variable需要放进一个计算图中,然后进行前后向传播和自动求导。 3.Variable的属性有三个: data:Variable里 ...
parameter 官网API 其可以将普通张量转变为模型参数的一部分。Parameters是Tensor的一个子类,当用于Module时具有非常特殊的属性,当其被赋予为模块的属性时,他们自动 ...
application 1 application 2 function_cat() ...