1. 切比雪夫不等式 \(P(|X−EX|≥ϵ)≤DX/ϵ^2\) 等价的是: \(P(|X−EX|<ϵ)≥1−DX/ϵ^2\) 证明: 设连续型变量X的密度函数是f(x),事件|X−EX|≥ϵ表示X落在区间(EX−ϵ,EX+ϵ)外部。所以(将上下限扩展到正负无穷会比原来 ...
泰勒公式 泰勒公式: Jensen不等式 若f是凸函数,则 切比雪夫不等式 切比雪夫不等式: 切比雪夫不等式的证明过程: ...
2018-11-29 15:12 0 705 推荐指数:
1. 切比雪夫不等式 \(P(|X−EX|≥ϵ)≤DX/ϵ^2\) 等价的是: \(P(|X−EX|<ϵ)≥1−DX/ϵ^2\) 证明: 设连续型变量X的密度函数是f(x),事件|X−EX|≥ϵ表示X落在区间(EX−ϵ,EX+ϵ)外部。所以(将上下限扩展到正负无穷会比原来 ...
切比雪夫不等式:对于任何分布的观测样本,观测样本落在偏离其均值k个标准差范围内的概率最小为$1-1/k^2$,对于所有k>1成立。 $P(-k\sigma<x-\mu<k\sigma)\geqslant 1-1/k^2 $其中,$k>1$ 根据切比雪夫不等式,样本落在 ...
切比雪夫不等式 一、总结 一句话总结: 【事件大多会集中在平均值附近】:切比雪夫不等式,描述了这样一个事实,事件大多会集中在平均值附近。 切比雪夫不等式:$$P ( | X - \mu | \geq k \sigma ) \leq \frac { 1 } { k ...
马尔可夫不等式与切比雪夫不等式 一、总结 一句话总结: 马尔科夫不等式:P(X>=a) <= E(X)/a,X>=0,a>0 切比雪夫不等式:P{|X-E(X)|>=ε} <= δ^2/ε^2,δ是标准差 1、马尔可夫不等式与切比雪夫不等式 选择 ...
形象的运用马尔可夫不等式在实际应用中 ...
的概率上界比较宽松。 据此推出的切比雪夫不等式应用比较广泛。 切比雪夫不等式 切比雪夫不等式的一种推导 ...
定理4.4 (切比雪夫不等式) 设随机变量 \(X\) 的期望和方差均存在,则对任意 \(\varepsilon > 0\),有 \[P(|X - WX| \geq \varepsilon) \leq \displaystyle\frac{DX}{\varepsilon ...
若f(x)为区间I上的下凸(上凸)函数,则对于任意xi∈I和满足∑λi=1的λi>0(i=1,2,...,n),成立: \[f(\sum ^{n} _{i=1} \lambda _{i}x_{ ...