切比雪夫不等式


1. 切比雪夫不等式

\(P(|X−EX|≥ϵ)≤DX/ϵ^2\)
等价的是:
\(P(|X−EX|<ϵ)≥1−DX/ϵ^2\)
证明:
设连续型变量X的密度函数是f(x),事件|X−EX|≥ϵ表示X落在区间(EX−ϵ,EX+ϵ)外部。所以(将上下限扩展到正负无穷会比原来大):

切比雪夫不等式

反之,
\(P(|X−EX|<ϵ)≥1−DX/ϵ2\)

应用切比雪夫不等式必须满足E(X)和D(X)存在且有限这一条件。

2. 切比雪夫大数定理:

设X1,X2,…,Xn,…是相互独立的随机变量序列,数学期望E(Xi)和方差D(Xi)都存在(i=1,2,…),且D(Xi) < K (i=l,2,…),则对任意给定的ε>0,有


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM