下面是二维卷积函数的样例和解释,一维或更高维的卷积函数与之类似 1、tf.nn.conv2d 关键参数如下 input.shape=[batch, in_height, in_width, in_channels] filter.shape= [filter_height ...
input:输入数据 filter:过滤器 strides:卷积滑动步长,实际上可以解释为过滤器的大小 padding:图像边填充方式 gt 在这里详细地对各个参数做出解释: input:就是卷积的输入数据,该输入数据要求是一个Tensor,所以张量的shape为 batch, in height, in width, in channels ,batch为训练 一个 batch图片数量,这是一 ...
2018-07-20 16:48 0 6304 推荐指数:
下面是二维卷积函数的样例和解释,一维或更高维的卷积函数与之类似 1、tf.nn.conv2d 关键参数如下 input.shape=[batch, in_height, in_width, in_channels] filter.shape= [filter_height ...
tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要 tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None ...
方法定义 tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=True, data_format="NHWC", dilations=[1,1,1,1], name=None) 参数: input: 输入的要做 ...
转自 http://www.cnblogs.com/welhzh/p/6607581.html 下面是这位博主自己的翻译加上测试心得 tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法 ...
来源:http://blog.sina.com.cn/s/blog_6ca0f5eb0102wsuu.html 在查看代码的时候,看到有代码用到卷积层是tf.nn.conv2d,但是也有的使用的卷积层是tf.contrib.slim.conv2d,这两个函数调用的卷积层是否一致,在查看 ...
最近在研究学习TensorFlow,在做识别手写数字的demo时,遇到了tf.nn.conv2d这个方法,查阅了官网的API 发现讲得比较简略,还是没理解。google了一下,参考了网上一些朋友写得博客,结合自己的理解,差不多整明白了。 方法定义tf.nn.conv2d (input ...
上进行滑窗并相乘求和。 tensorflow中的conv1d和conv2d的区别:conv1d是单通道 ...