MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications MobileNetV2: Inve ...
MobileNet Efficient Convolutional Neural Networks for Mobile Vision Applications Google CVPR MobileNet引入了传统网络中原先采用的group思想,即限制滤波器的卷积计算只针对特定的group中的输入,从而大大降低了卷积计算量,提升了移动端前向计算的速度。 . 卷积分解 MobileNet借鉴fact ...
2018-05-15 21:16 0 2649 推荐指数:
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications MobileNetV2: Inve ...
最近一段时间,重新研读了谷歌的mobilenet系列,对该系列有新的认识。 1.MobileNet V1 这篇论文是谷歌在2017年提出了,专注于移动端或者嵌入式设备中的轻量级CNN网络。该论文最大的创新点是,提出了深度可分离卷积(depthwise separable convolution ...
MobileNet系列之MobileNet_v1 MobileNet系列之MobileNet_v2 导言: 继MobileNet_v1和v2提出后,在2019年,MobileNet_v3在众人的期盼下出来了,MobileNet_v3论文提出了两个模型 ...
paper https://arxiv.org/abs/1704.04861 MobileNet 由谷歌在 2017 年提出,是一款专注于在移动设备和嵌入式设备上的 轻量级 CNN神经网络,并 迅速 衍生了 v1 v2 v3 三个版本; 相比于传统的 CNN 网络,在准确率小幅降低的前提下 ...
目录 1. Depth Separable Convolution 2. 网络结构 3. 宽度因子和分辨率因子 4. 代码实现 参考博客: https:/ ...
先来一波各版本性能展览: Pre-trained Models Choose the right MobileNet model to fit your latency and size budget. The size of the network in memory and on disk ...
最近在利用SSD检测物体时,由于实际项目要求,需要对模型进行轻量化,所以考虑利用轻量网络替换原本的骨架VGG16,查找一些资料后最终采用了google开源的mobileNetV2。这里对学习mobileNet系列的过程做一些总结。mobileNetV1是由google在2017年发布 ...
68.5 改了一下测试的方式,变成68.7了,感觉还是差了好多。不知道问题出在哪里,接下来用pytorch训练一个看看。 感觉这差的有点多啊。年后查原因吧。 caffe训练起来效果真的比 ...