问题: 在《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二(除以3余2),五五数之剩三(除以5余3),七七数之剩二(除以7余2),问物几何?”这个问题称为“孙子问题”,该问题的一般解法国际上称为“中国剩余定理”。 解析: 题目意思即为有这样一组方程: (m1---mn ...
想必学完exgcd的各位dalao们都已经明白如何求解同余方程了 今天本蒟蒻只是想讲讲线性同余方程组的解法供各位大佬批评指错 我们现在有一些线性同余方程 X b mod a X b mod a ... X bn mod an 对于前面第一个方程,我们可以用exgcd求出一个X满足一式 不妨设X a y b 若存在X满足二式,则a y b b mod a 所以y b b a mod a 该式有解当且 ...
2018-02-02 09:32 5 875 推荐指数:
问题: 在《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二(除以3余2),五五数之剩三(除以5余3),七七数之剩二(除以7余2),问物几何?”这个问题称为“孙子问题”,该问题的一般解法国际上称为“中国剩余定理”。 解析: 题目意思即为有这样一组方程: (m1---mn ...
一.线性方程组求解定理 1.线性方程组有解判别定理 线性方程组a11 x1 + a12 x2 + … + a1n x n = b1 ,a21 x1 + a22 x2 + … + a2n x n = b2 ...
SVD分解 只有非方阵才能进行奇异值分解 SVD分解:把矩阵分解为 特征向量矩阵+缩放矩阵+旋转矩阵 定义 设\(A∈R^{m×n}\),且$ rank(A) = r (r ...
3.5 线性方程组解的结构 (1)齐次线性方程组解的结构 什么是线性方程组的解的结构? 所谓线性方程组解的结构,就是当线性方程组有五险多个解时,解与解之间的关系。 备注:当方程组存在唯一解时,无须讨论解的结构 性质1:若x=§1, x = §2 是齐次线性方程组 Ax ...
3.3 线性方程组有解的判定 3.3.1 非齐次线性方程组解的判定 3.3.2 齐次线性方程组解的判定 ...
一. 矩阵分解: 矩阵分解 (decomposition, factorization)是将矩阵拆解为数个矩阵的乘积,可分为三角分解、满秩分解、QR分解、Jordan分解和SVD(奇异值)分解等,常 ...
例 1:在有理数中,解线性方程组 \[\begin{cases} x_1 - x_2 + x_3 = 1 \\ x_1 - x_2 - x_3 = 3 \\ 2x_1 - 2x_2 - x_3 = 3 \end{cases} \] 增广矩阵经过若干次初等行变换,可得阶梯 ...
今天下午才上完课,自己再回顾一下,感觉做了几年真题,本块知识点考的几率可能不是很大,但仍需背住定理掌握。 一、方程组的公共解 所谓(I)和(II)的公共解就是既满足(I)又满足(II)的解,核心套路——联立 有以下三个方法: 一道题展示三个不同的方法: 一道2007年 ...