条件概率 •设A,B为任意两个事件,若P(A)>0,我们称在已知事件A发生的条件下,事件B发生的概率为条件概率,记为P(B|A),并定义 乘法公式 •如果P(A)>0 ...
贝叶斯定理 贝叶斯定理是关于随机事件A和B的条件概率和边缘概率的一则定理。 在参数估计中可以写成下面这样: 这个公式也称为逆概率公式,可以将后验概率转化为基于似然函数和先验概率的计算表达式,即 在贝叶斯定理中,每个名词都有约定俗成的名称: P A 是A的先验概率或边缘概率。之所以称为 先验 是因为它不考虑任何B方面的因素。P A B 是已知B发生后A的条件概率 在B发生的情况下A发生的可能性 ,也 ...
2017-11-23 17:35 0 1605 推荐指数:
条件概率 •设A,B为任意两个事件,若P(A)>0,我们称在已知事件A发生的条件下,事件B发生的概率为条件概率,记为P(B|A),并定义 乘法公式 •如果P(A)>0 ...
目录 一、贝叶斯 什么是先验概率、似然概率、后验概率 公式推导 二、为什么需要朴素贝叶斯 三、朴素贝叶斯是什么 条件独立 举例:长肌肉 拉普拉斯平滑 半朴素贝叶斯 一、贝叶斯 ...
朴素贝叶斯模型 朴素贝叶斯的应用 朴素贝叶斯模型是文本领域永恒的经典,广泛应用在各类文本分析的任务上。只要遇到了文本分类问题,第一个需要想到的方法就是朴素贝叶斯,它在文本分类任务上是一个非常靠谱的基准(baseline)。 比如对于垃圾邮件的分类,朴素贝叶斯 ...
其实这是我之前最想第一篇来写的随笔了,今天就先把这一部分写一写吧。 1.问题 一个医疗诊断问题有两个可选的假设:病人有癌症、病人无癌症可用数据来自化验结果:阴性和阳性。有先验知识:在所有人口中 ...
先上问题吧,我们统计了14天的气象数据(指标包括outlook,temperature,humidity,windy),并已知这些天气是否打球(play)。如果给出新一天的气象指标数据:sunny,c ...
总共有4节内容,如果你对贝叶斯分类已经熟悉,只想看看它在图像分类中的应用,请直接跳到第4节。 1、 ...
朴素贝叶斯算法 👉 naive_bayes.MultinomialNB 朴素贝叶斯算法,主要用于分类. 例如:需要对垃圾邮件进行分类 分类思想 , 如何分类 , 分类的评判标准??? 预测文章的类别概率, 预测某个样本属于 N个目标分类的相应概率,找出最大 ...
朴素贝叶斯详解 此博客参考借鉴算法学习者的blog,链接地址如下:https://blog.csdn.net/AMDS123/article/details/70173402#reply%23reply 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。而朴素贝 ...