原文地址:https://www.jianshu.com/p/f864bac6cb7a 拉普拉斯矩阵是图论中用到的一种重要矩阵,给定一个有n个顶点的图 G=(V,E),其拉普拉斯矩阵被定义为 L = D-A,D其中为图的度矩阵,A为图的邻接矩阵。例如,给定一个简单的图,如下(例子 ...
作者:桂。 时间: : : 链接:http: www.cnblogs.com xingshansi p .html 声明:欢迎被转载,不过记得注明出处哦 前言 前面分析了非负矩阵分解 NMF 的应用,总觉得NMF与谱聚类 Spectral clustering 的思想很相似,打算分析对比一下。谱聚类更像是基于图 Graph 的思想,其中涉及到一个重要概念就是拉普拉斯矩阵 Laplace matri ...
2017-04-13 19:06 1 21441 推荐指数:
原文地址:https://www.jianshu.com/p/f864bac6cb7a 拉普拉斯矩阵是图论中用到的一种重要矩阵,给定一个有n个顶点的图 G=(V,E),其拉普拉斯矩阵被定义为 L = D-A,D其中为图的度矩阵,A为图的邻接矩阵。例如,给定一个简单的图,如下(例子 ...
【摘要】 Laplace算子作为边缘检测之一,和Sobel算子一样也是工程数学中常用的一种积分变换,属于空间锐化滤波操作。拉普拉斯算子(Laplace Operator)是n维欧几里德空间中的一个二阶微分算子,定义为梯度(▽f)的散度(▽·f)。拉普拉斯算子也可以推广为定义在黎曼流形 ...
拉普拉斯平滑(Laplace Smoothing)又称 加1平滑,常用平滑方法。解决零概率问题。 背景:为什么要做平滑处理? 零概率问题:在计算实例的概率时,如果某个量x,在观察样本库(训练集)中没有出现过,会导致整个实例的概率结果是0。 在文本分类的问题中,当一个词语没有在训练样本中出 ...
拉普拉斯分布的定义与基本性质 其分布函数为 分布函数图 其概率密度函数为 密度函数图 拉普拉斯分布与正太分布的比较 从图中可以直观的发现拉普拉斯分布跟正太分布很相似,但是拉普拉斯分布比正太分布有尖的峰和轻微的厚尾。 ...
摘自 https://blog.csdn.net/beiyangdashu/article/details/49300479 和 https://en.wikipedia.org/wiki/Laplacian_matrix 定义 给定一个由n个顶点的简单图G,它的拉普拉斯矩阵定义为: L ...
Laplace分布的概率密度函数的形式是这样的: $p(x) = \frac{1}{2 \lambda} e^{-\frac{\vert x –\mu \vert}{\lambda}}$ 一般$\mu$的取值为0,所以形式如下: $p(x) = \frac{1}{2 \lambda} e ...
拉普拉斯矩阵(Combinatorial Laplacian) 拉普拉斯矩阵(Laplacian matrix)也叫做导纳矩阵、基尔霍夫矩阵或离散拉普拉斯算子,主要应用在图论中,作为一个图的矩阵表示。 给定一个有 $n$ 个顶点的图 $G$,它的拉普拉斯矩阵: $L=D-A ...
转自:https://www.kechuang.org/t/84022?page=0&highlight=859356,感谢分享! 在机器学习、多维信号处理等领域,凡涉及到图论的地方,相信小伙伴们总能遇到和拉普拉斯矩阵和其特征值有关的大怪兽。哪怕过了这一关,回想起来也常常一脸懵逼 ...