本文来自《Age Progression/Regression by Conditional Adversarial Autoencoder》,时间线为2017年2月。 该文很有意思,是如何通过当前图片生成你不同年龄时候的样子。 假设给你一张人脸(没有告诉你多少岁)和一堆网上爬取的人脸图像 ...
The issus in Age Progression Regression by Conditional Adversarial Autoencoder CAAE Today I tried a new project named:Face Aging CAAE Paper Name: Age Progression Regression by Conditional Adversarial ...
2017-03-30 15:43 1 2277 推荐指数:
本文来自《Age Progression/Regression by Conditional Adversarial Autoencoder》,时间线为2017年2月。 该文很有意思,是如何通过当前图片生成你不同年龄时候的样子。 假设给你一张人脸(没有告诉你多少岁)和一堆网上爬取的人脸图像 ...
论文:《Conditional Generative Adversarial Nets》 年份:2014年 引言 原始的GAN过于自由,训练会很容易失去方向,导致不稳定且效果差。比如说GAN生成MNIST数字的过程,虽然可以生成数字,但生成的结果是随机的(因为是根据输入的随机噪声 ...
Learning Face Age Progression: A Pyramid Architecture of GANs Abstract 人脸年龄发展有着两个重要的需求,即老化准确性和身份持久性,但是在文献中都 ...
Introduction 1. develop a common framework for all problems that are the task of predicting pixels ...
出处 CVPR2017 Motivation 尝试用条件GAN网络来做image translation,让网络自己学习图片到图片的映射函数,而不需要人工定制特征。 Introduction ...
Adversarial Camouflage: Hiding Physical-World Attacks with Natural Styles 组员:张荣华 黎君玉 杨根 1问题描述 神经网络(DNNS)是一类功能强大的模型,在各种人工智能系统中得到了广泛的应用,但其易受到对抗例子的攻击 ...
https://github.com/neverUseThisName/Decorrelated-Adversarial-Learning Decorrelated Adversarial Learning for Age-Invariant Face ...
前言 AutoEncoder是深度学习的另外一个重要内容,并且非常有意思,神经网络通过大量数据集,进行end-to-end的训练,不断提高其准确率,而AutoEncoder通过设计encode和decode过程使输入和输出越来越接近,是一种无监督学习过程。 AutoEncoder ...